Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Chem Neurosci ; 15(18): 3321-3343, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39242213

ABSTRACT

NMDA receptors (NMDARs) are glutamate-gated ion channels playing a central role in synaptic transmission and plasticity. NMDAR dysregulation is linked to various neuropsychiatric disorders. This is particularly true for GluN2B-containing NMDARs (GluN2B-NMDARs), which have major pro-cognitive, but also pro-excitotoxic roles, although their exact involvement in these processes remains debated. Traditional GluN2B-selective antagonists suffer from slow and irreversible effects, limiting their use in native tissues. We therefore developed OptoNAM-3, a photoswitchable negative allosteric modulator selective for GluN2B-NMDARs. OptoNAM-3 provided light-induced reversible inhibition of GluN2B-NMDAR activity with precise temporal control both in vitro and in vivo on the behavior of freely moving Xenopus tadpoles. When bound to GluN2B-NMDARs, OptoNAM-3 displayed remarkable red-shifting of its photoswitching properties allowing the use of blue light instead of UV light to turn-off its activity, which we attributed to geometric constraints imposed by the binding site onto the azobenzene moiety of the ligand. This study therefore highlights the importance of the binding site in shaping the photochemical properties of azobenzene-based photoswitches. In addition, by enabling selective, fast, and reversible photocontrol of native GluN2B-NMDARs with in vivo compatible photochemical properties (visible light), OptoNAM-3 should be a useful tool for the investigation of the GluN2B-NMDAR physiology in native tissues.


Subject(s)
Light , Receptors, N-Methyl-D-Aspartate , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Xenopus laevis , Azo Compounds/pharmacology , Azo Compounds/chemistry , Xenopus , Larva/metabolism , Humans
2.
J Physiol ; 600(2): 233-259, 2022 01.
Article in English | MEDLINE | ID: mdl-34339523

ABSTRACT

NMDA receptors (NMDARs) are glutamate-gated ion channels that play key roles in synaptic transmission and plasticity. Both hyper- and hypo-activation of NMDARs are deleterious to neuronal function. In particular, NMDAR hypofunction is involved in a wide range of neurological and psychiatric conditions like schizophrenia, intellectual disability, age-dependent cognitive decline, or Alzheimer's disease. While early medicinal chemistry efforts were mostly focused on the development of NMDAR antagonists, the last 10 years have seen a boom in the development of NMDAR positive allosteric modulators (PAMs). Here we review the currently developed NMDAR PAMs, their pharmacological profiles and mechanisms of action, as well as their physiological effects in healthy animals and animal models of NMDAR hypofunction. In light of the complexity of physiological outcomes of NMDAR PAMs in vivo, we discuss the remaining challenges and questions that need to be addressed to better grasp and predict the therapeutic potential of NMDAR positive allosteric modulation.


Subject(s)
Alzheimer Disease , Receptors, N-Methyl-D-Aspartate , Allosteric Regulation , Animals , Glutamic Acid , Receptors, N-Methyl-D-Aspartate/metabolism , Synaptic Transmission
3.
Bioorg Med Chem ; 28(18): 115655, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32828422

ABSTRACT

Structural modifications of the neuronal calcium channel blocker MONIRO-1, including constraining the phenoxyaniline portion of the molecule and replacing the guanidinium functionality with tertiary amines, led to compounds with significantly improved affinities for the endogenously expressed CaV2.2 channel in the SH-SY5Y neuroblastoma cell line. These analogues also showed promising activity towards the CaV3.2 channel, recombinantly expressed in HEK293T cells. Both of these ion channels have received attention as likely targets for the treatment of neuropathic pain. The dibenzoazepine and dihydrobenzodiazepine derivatives prepared in this study show an encouraging combination of neuronal calcium ion channel inhibitory potency, plasma stability and potential to cross the blood-brain-barrier.


Subject(s)
Anilides/chemical synthesis , Antineoplastic Agents/chemical synthesis , Benzodiazepines/chemistry , Calcium Channel Blockers/chemical synthesis , Calcium Channels/metabolism , Neuralgia/drug therapy , Recombinant Proteins/metabolism , Anilides/metabolism , Animals , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Blood-Brain Barrier/metabolism , Calcium/metabolism , Calcium Channel Blockers/metabolism , Calcium Channel Blockers/pharmacology , Calcium Channels/genetics , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Models, Molecular , Neurons/metabolism , Rats, Sprague-Dawley , Recombinant Proteins/genetics , Signal Transduction , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL