Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 312(2): 292-8, 2003 Dec 12.
Article in English | MEDLINE | ID: mdl-14637135

ABSTRACT

Myeloperoxidase (MPO) is one of the essential components of the antimicrobial systems of polymorphonuclear neutrophils. It is unique in having a globin-like standard reduction potential of the ferric/ferrous couple. Here, it is shown that ferrous MPO heterolytically cleaves hydrogen peroxide forming water and oxyferryl MPO (compound II). The two-electron oxidation reaction follows second-order kinetics with the apparent bimolecular rate constant being (6.8+/-0.6)x10(4)M(-1)s(-1) at pH 7.0. After depletion of (micromolar) H(2)O(2) compound II slowly decays to ferric MPO, whereas upon addition of millimolar H(2)O(2) to ferrous MPO, compound III (oxyperoxidase) is formed in a sequence of two reactions involving compound II formation and its direct reaction with H(2)O(2), which also follows second-order kinetics [(78+/-2)M(-1)s(-1) at pH 7.0]. It is discussed how these reactions contribute to the interconversion of compound II and compound III and could explain the catalase activity of MPO.


Subject(s)
Ferrous Compounds/chemistry , Flow Injection Analysis , Hydrogen Peroxide/chemistry , Hypochlorous Acid/chemistry , Peroxidase/chemistry , Anaerobiosis , Enzyme Activation , Immunoenzyme Techniques , Kinetics , Oxidation-Reduction , Oxygen , Peroxidase/chemical synthesis , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL