Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Drug Test Anal ; 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37903531

ABSTRACT

Novel metabolites of the anabolic androgenic steroid 17α-methyltestosterone have been detected in HepG2 cell in vitro metabolic model and in human urine. Their detection was accomplished through targeted gas chromatography-(tandem) mass spectrometry analysis that has been based on microscale synthesized standards. The related synthesis and the gas chromatography-(tandem) mass spectrometry characterization of the analytical standards are described. All newly presented metabolites have a fully reduced steroid A-ring with either an 17,17-dimethyl-18-nor-Δ13 structure or they have been further oxidized at position 16 of the steroid backbone. Metabolites with 17,17-dimethyl-18-nor-Δ13 structure may be considered as side products of phase II metabolic sulfation of the 17ß-hydroxy group of methyltestosterone or its reduced tetrahydro-methyltestosterone metabolites 17α-methyl-5ß-androstane-3α,17ß-diol and 17α-methyl-5α-androstane-3α,17ß-diol that produce the known epimeric 17ß-methyl-5ß-androstane-3α,17α-diol and 17ß-methyl-5α-androstane-3α,17α-diol metabolites. The prospective of these new metabolites to increase detection time windows and improve identification was investigated by applying the World Anti-doping Agency TD2021IDCR criteria. The new metabolites, presented herein, complement the current knowledge on the 17α-methyltestosterone metabolism and in some cases can be used as additional long-term markers in the frame of sport doping drug testing.

2.
Metabolites ; 12(5)2022 May 10.
Article in English | MEDLINE | ID: mdl-35629929

ABSTRACT

Untargeted metabolomics was used to analyze serum and urine samples for biomarkers of autologous blood transfusion (ABT). Red blood cell concentrates from donated blood were stored for 35−36 days prior to reinfusion into the donors. Participants were sampled at different time points post-donation and up to 7 days post-transfusion. Metabolomic profiling was performed using ACQUITY ultra performance liquid chromatography (UPLC), Q-Exactive high resolution/accurate mass spectrometer interfaced with a heated electrospray ionization (HESI-II) source and Orbitrap mass analyzer operated at 35,000 mass resolution. The markers of ABT were determined by principal component analysis and metabolites that had p < 0.05 and met ≥ 2-fold change from baseline were selected. A total of 11 serum and eight urinary metabolites, including two urinary plasticizer metabolites, were altered during the study. By the seventh day post-transfusion, the plasticizers had returned to baseline, while changes in nine other metabolites (seven serum and two urinary) remained. Five of these metabolites (serum inosine, guanosine and sphinganine and urinary isocitrate and erythronate) were upregulated, while serum glycourdeoxycholate, S-allylcysteine, 17-alphahydroxypregnenalone 3 and Glutamine conjugate of C6H10O2 (2)* were downregulated. This is the first study to identify a panel of metabolites, from serum and urine, as markers of ABT. Once independently validated, it could be universally adopted to detect ABT.

3.
Drug Test Anal ; 14(5): 826-832, 2022 May.
Article in English | MEDLINE | ID: mdl-34216436

ABSTRACT

The hematological module of the Athlete Biological Passport (ABP) is used for indirect detection of blood manipulations; however, the use of this method to detect doping, such as with microdoses of recombinant human erythropoietin (rhEPO), is problematic. For this reason, the sensitivity of ABP must be enhanced by implementing novel biomarkers. Here, we show that 5'-aminolevulinate synthase 2 (ALAS2) mRNAs are useful transcriptomic biomarkers to improve the indirect detection of rhEPO microdosing. Moreover, the sensitivity was sufficient to distinguish rhEPO administration from exposure to hypoxic conditions. Levels of mRNAs encoding carbonate anhydrase 1 (CA1) and solute carrier family 4 member 1 (SLC4A1) RNA, as well as the linear (L) and linear + circular (LC) forms of ALAS2 mRNA, were monitored for 16 days after rhEPO microdosing and during exposure to hypoxic conditions. ALAS2 mRNAs increased by 300% compared with the baseline values after rhEPO microdosing. Moreover, ALAS2 mRNAs were not significantly increased under hypoxic conditions. By contrast, CA1 mRNA was increased after both rhEPO microdosing and hypoxia, whereas SLC4A1 mRNA did not significantly increase under either condition. Furthermore, the analyses described here were performed using dried blood spots (DBSs), which provide advantages in terms of the sample collection, transport, and storage logistics. This study demonstrates that ALAS2 mRNA levels are sensitive and specific transcriptomic biomarkers for the detection of rhEPO microdosing using the hematological module of the ABP, and this method is compatible with the use of DBSs for anti-doping analyses.


Subject(s)
Doping in Sports , Erythropoietin , 5-Aminolevulinate Synthetase/genetics , Biomarkers , Doping in Sports/methods , Humans , Hypoxia , RNA , RNA, Messenger/genetics , Recombinant Proteins
4.
Front Mol Biosci ; 8: 728273, 2021.
Article in English | MEDLINE | ID: mdl-34765642

ABSTRACT

Introduction: Recombinant human erythropoietin (rHuEPO) administration studies involving transcriptomic approaches have demonstrated a gene expression signature that could aid blood doping detection. However, current anti-doping testing does not involve collecting whole blood into tubes with RNA preservative. This study investigated if whole blood in long-term storage and whole blood left over from standard hematological testing in short-term storage could be used for transcriptomic analysis despite lacking RNA preservation. Methods: Whole blood samples were collected from twelve and fourteen healthy nonathletic males, for long-term and short-term storage experiments. Long-term storage involved whole blood collected into Tempus™ tubes and K2EDTA tubes and subjected to long-term (i.e., ‒80°C) storage and RNA extracted. Short-term storage involved whole blood collected into K2EDTA tubes and stored at 4°C for 6‒48 h and then incubated at room temperature for 1 and 2 h prior to addition of RNA preservative. RNA quantity, purity, and integrity were analyzed in addition to RNA-Seq using the MGI DNBSEQ-G400 on RNA from both the short- and long-term storage studies. Genes presenting a fold change (FC) of >1.1 or < ‒1.1 with p ≤ 0.05 for each comparison were considered differentially expressed. Microarray analysis using the Affymetrix GeneChip® Human Transcriptome 2.0 Array was additionally conducted on RNA from the short-term study with a false discovery ratio (FDR) of ≤0.05 and an FC of >1.1 or < ‒1.1 applied to identify differentially expressed genes. Results: RNA quantity, purity, and integrity from whole blood subjected to short- and long-term storage were sufficient for gene expression analysis. Long-term storage: when comparing blood tubes with and without RNA preservation 4,058 transcripts (6% of coding and non-coding transcripts) were differentially expressed using microarray and 658 genes (3.4% of mapped genes) were differentially expressed using RNA-Seq. Short-term storage: mean RNA integrity and yield were not significantly different at any of the time points. RNA-Seq analysis revealed a very small number of differentially expressed genes (70 or 1.37% of mapped genes) when comparing samples stored between 6 and 48 h without RNA preservative. None of the genes previously identified in rHuEPO administration studies were differently expressed in either long- or short-term storage experiments. Conclusion: RNA quantity, purity, and integrity were not significantly compromised from short- or long-term storage in blood storage tubes lacking RNA stabilization, indicating that transcriptomic analysis could be conducted using anti-doping samples collected or biobanked without RNA preservation.

5.
Bioanalysis ; 13(19): 1511-1527, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34617444

ABSTRACT

The summer Olympic Games is the major mega sports event since the first modern era Olympiad, held in Athens, Greece in 1896. International Olympic Committee (IOC) has the responsibility of the organization of the summer and winter Games ensuring the broadcast in all corners of earth. The World Anti-Doping Agency (WADA) is the responsible organization of the fight against doping in sports. IOC and WADA support the event's country WADA Accredited Laboratory to incorporate the maximum of the new analytical technologies to become applicable during the event's antidoping testing. The current study reviewed the last 5 years progresses of the antidoping system with emphasis on the laboratory field.


Subject(s)
Chemistry Techniques, Analytical , Doping in Sports/prevention & control , Humans , International Agencies , Laboratories , Tokyo
6.
Rapid Commun Mass Spectrom ; 35(17): e9141, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34106497

ABSTRACT

RATIONALE: The World Antidoping Agency (WADA) Monitoring program concentrates analytical data from the WADA Accredited Laboratories for substances which are not prohibited but whose potential misuse must be known. The WADA List of Monitoring substances is updated annually, where substances may be removed, introduced or transferred to the Prohibited List, depending on the prevalence of their use. Retroactive processing of old sample datafiles has the potential to create information for the prevalence of use of candidate substances for the Monitoring List in previous years. MetAlign is a freeware software with functionality to reduce the size of liquid chromatography (LC)/high-resolution (HR) full-scan (FS) mass spectrometry (MS) datafiles and to perform a fast search for the presence of substances in thousands of reduced datafiles. METHODS: Validation was performed to the search procedure of MetAlign applied to Anti-Doping Lab Qatar (ADLQ)-screened LC/HR-FS-MS reduced datafiles originated from antidoping samples for tramadol (TRA), ecdysterone (ECDY) and the ECDY metabolite 14-desoxyecdysterone (DESECDY) of the WADA Monitoring List. Searching parameters were related to combinations of accurate masses and retention times (RTs). RESULTS: MetAlign search validation criteria were based on the creation of correct identifications, false positives (FPs) and false negatives (FNs). The search for TRA in 7410 ADLQ routine LC/HR-FS-MS datafiles from the years 2017 to 2020 revealed no false identification (FPs and FNs) compared with the ADLQ WADA reports. ECDY and DESECDY were detected by MetAlign search in approximately 5% of the same cohort of antidoping samples. CONCLUSIONS: MetAlign is a powerful tool for the fast retroactive processing of old reduced datafiles collected in screening by LC/HR-FS-MS to reveal the prevalence of use of antidoping substances. The current study proposed the validation scheme of the MetAlign search procedure, to be implemented per individual substance in the WADA Monitoring program, for the elimination of FNs and FPs.


Subject(s)
Anabolic Agents/urine , Chromatography, Liquid/methods , Doping in Sports/methods , Ecdysterone/urine , Mass Spectrometry/methods , Tramadol/urine , Doping in Sports/prevention & control , Humans , Urine/chemistry
7.
Drug Test Anal ; 13(2): 460-465, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33119942

ABSTRACT

The current study examined the stability of several antidoping prohibited substances analytes in urine after 15-min exposure to UV-C light in a Biosafety Level 2 cabinet. The urine matrices were exposed within the original antidoping bottles with the aim to destroy DNA/RNA and possible SARS CoV-2. The analytes small molecules Phase I and Phase II metabolites and peptides, in total 444, endogenous, internal standards, and prohibited substances, pH, and specific gravity in urine were studied. The accredited analytical methods were used by Anti-Doping Laboratory Qatar for the comparison of data of the same urine samples analyzed with and without UV-C exposure. In the study conditions, no problems of stability were detected in the substances spiked in the urine samples exposed in the UV-C irradiation.


Subject(s)
Anabolic Agents/urine , Substance Abuse Detection/methods , Urinalysis/methods , Containment of Biohazards/methods , Doping in Sports , Humans , Ultraviolet Rays
8.
Drug Test Anal ; 13(3): 529-538, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33119945

ABSTRACT

Antidoping testing for recombinant human erythropoietin (EPO) is routinely performed by gel electrophoresis followed by western blot analysis with primary and secondary antibodies. The two antibody steps add more than 24 h to the testing time of a purified sample. The aim of this study was to test the concept of using directly horseradish-peroxidase (HRP)-conjugated anti-EPO primary antibody, without the need for a secondary antibody, to reduce the analysis time and eliminate non-specific cross-reactivity with secondary antibodies. An in-house, periodate coupling (R&D systems, clone AE7A5) and three commercially available anti-human EPO-HRP conjugates from Genetex, Novus Biologicals and Santa Cruz were evaluated for specificity and sensitivity, using recombinant human EPO standards, negative human urine samples and urine samples from an EPO excretion study. The in-house anti-EPO-HRP conjugate was performed as well as the current two-step application of unconjugated primary and secondary antibodies used in routine analysis, with comparable specificity and sensitivity. The analysis time was markedly reduced for purified samples from 25 h with the routine method down to 7 h with the in-house HRP conjugate. Of the three commercially available conjugates tested, only the Santa Cruz anti-EPO-HRP conjugate showed comparable specificity but had lower sensitivity to both the in-house and the antibody combination currently applied routinely. The other two commercially available conjugates (Genetex and Novus Biologicals) did not show any visible bands with the EPO standards. The results clearly demonstrate the potential utility of a directly HRP-conjugated anti-EPO antibody to reduce analysis time for EPO in doping control.


Subject(s)
Antibodies/immunology , Erythropoietin/analysis , Horseradish Peroxidase/immunology , Substance Abuse Detection/methods , Blotting, Western , Doping in Sports/prevention & control , Electrophoresis, Polyacrylamide Gel , Erythropoietin/immunology , Horseradish Peroxidase/chemistry , Humans , Recombinant Proteins , Sensitivity and Specificity , Time Factors
9.
Front Physiol ; 11: 600888, 2020.
Article in English | MEDLINE | ID: mdl-33178053

ABSTRACT

OBJECTIVES: Circulating cytokines and oxidative stress markers vary in response to different exercise regimens. This study aims to compare the immune-inflammatory and oxidative stress profiles of elite athletes from different sport disciplines as potential biomarkers of muscle damage, and cardiovascular demand. METHODS: Serum samples from 88 consented elite male athletes from different sports disciplines (aquatics, n = 11, athletics, n = 22, cycling, n = 19, football, n = 28 and weightlifting, n = 8) collected at the anti-doping lab in Italy were screened for 38 cytokines and oxidative stress markers. Comparisons were made between different level of power, cardiovascular demand (CD) and endurance, as well as among the sport types. RESULTS: The anti-inflammatory interleukin (IL)-10 was higher (p = 0.04) in moderate power compared with the high power group. Conversely, superoxide dismutase (SOD; p = 0.001) and malondialdehyde (MDA; p = 0.007) levels were greater in the higher power groups compared with the lower power counterpart. Among athletes who belong to different CD ranks, IL-1ß and monocyte chemoattractant protein-1(MCP1) levels were higher (p = 0.03) in the low CD-rank group compared with high CD counterpart, whereas, SOD levels were higher (p = 0.001) in high and moderate CD-rank groups compared to low counterpart. For endurance groups, IL-10 and macrophage inflammatory protein (MIP)-1beta were increased (p = 0.03) in low/moderate endurance compared with the high endurance group. Finally, MIP1-beta, SOD and catalase varied significantly among the sports groups. CONCLUSION: Specific markers of inflammation and oxidative stress are associated with different sports disciplines and could be utilized as potential biomarkers of athletes' health, performance, and recovery from injury.

10.
Front Genet ; 11: 595, 2020.
Article in English | MEDLINE | ID: mdl-32612638

ABSTRACT

BACKGROUND: The genetic predisposition to elite athletic performance has been a controversial subject due to the underpowered studies and the small effect size of identified genetic variants. The aims of this study were to investigate the association of common single-nucleotide polymorphisms (SNPs) with endurance athlete status in a large cohort of elite European athletes using GWAS approach, followed by replication studies in Russian and Japanese elite athletes and functional validation using metabolomics analysis. RESULTS: The association of 476,728 SNPs of Illumina DrugCore Gene chip and endurance athlete status was investigated in 796 European international-level athletes (645 males, 151 females) by comparing allelic frequencies between athletes specialized in sports with high (n = 662) and low/moderate (n = 134) aerobic component. Replication of results was performed by comparing the frequencies of the most significant SNPs between 242 and 168 elite Russian high and low/moderate aerobic athletes, respectively, and between 60 elite Japanese endurance athletes and 406 controls. A meta-analysis has identified rs1052373 (GG homozygotes) in Myosin Binding Protein (MYBPC3; implicated in cardiac hypertrophic myopathy) gene to be associated with endurance athlete status (P = 1.43 × 10-8, odd ratio 2.2). Homozygotes carriers of rs1052373 G allele in Russian athletes had significantly greater VO2 max than carriers of the AA + AG (P = 0.005). Subsequent metabolomics analysis revealed several amino acids and lipids associated with rs1052373 G allele (1.82 × 10-05) including the testosterone precursor androstenediol (3beta,17beta) disulfate. CONCLUSIONS: This is the first report of genome-wide significant SNP and related metabolites associated with elite athlete status. Further investigations of the functional relevance of the identified SNPs and metabolites in relation to enhanced athletic performance are warranted.

11.
Drug Test Anal ; 12(11-12): 1544-1553, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32602999

ABSTRACT

Methylnortestosterone is a progestin and synthetic androgenic anabolic steroid, prohibited by WADA. Methylnortestosterone misuse is commonly detected by monitoring the parent compound and its main metabolites, 17α-methyl-5α-estrane-3α, 17ß-diol (M1) and 17α-methyl-5ß-estrane-3α, 17ß-diol (M2), in the glucuronide fraction. In the current study, a direct detection of methylnortestosterone sulfo-conjugated metabolites after ethyl acetate extraction and analysis by LC/Q/TOF-MS in negative ionization mode was performed, detecting two main sulfate metabolites (S1, S2). For the characterization of metabolites, samples from the excretion study, were additionally analyzed by GC-MS, after solvolysis and per TMS derivatization. RT and MS data collected, were compared with RT and MS data from metabolites of 17z-methyl-5α/ß-estrane-3α/ß, 17z-diols structures with prefixed stereochemistry at 3 and 5 positions, synthesized through Grignard reaction from 19-noretiocholanolone, 19-norandrosterone and 19-norepiandrosterone. Confirmed sulfate metabolites were S1, 17α-methyl-5α-estrane-3α, 17ß-diol 3α sulfate (detected up to 72 h) and S2, 17α-methyl-5ß-estrane-3α, 17ß-diol 3α sulfate (detected up to 192 h). Furthermore, applying targeted analysis based on RT and MS data of the synthesized metabolites two additional metabolites M3, 17ß-methyl-5ß-estrane-3α, 17α-diol and M4, 17ß-methyl-5α-estrane-3α, 17α-diol were detected in the glucuronide fraction and one more metabolite (S3) 17ß-methyl-5ß-estrane-3α, 17α-diol was detected in the sulfate fraction in lower abundance until the end of the excretion study (192 h). Interestingly, S2 could also be detected after the direct analysis of non-hydrolyzed steroid by GC-MS/MS as artifact, following normal ProcIV anabolic steroid procedure and using diethylether as extraction solvent.


Subject(s)
Doping in Sports/prevention & control , Estrenes/administration & dosage , Estrenes/urine , Progesterone Congeners/administration & dosage , Progesterone Congeners/urine , Substance Abuse Detection/methods , Administration, Oral , Biomarkers/urine , Doping in Sports/methods , Gas Chromatography-Mass Spectrometry/methods , Gas Chromatography-Mass Spectrometry/standards , Humans , Male , Middle Aged , Substance Abuse Detection/standards
13.
J Sports Sci ; 38(16): 1924-1932, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32543279

ABSTRACT

Athlete Biological Passport (ABP) is an indirect approach, implemented by WADA, aimed at detecting blood manipulation based on abnormal changes in haematological markers. Cases report the use of hyperhydration as masking method during anti-doping urine sample collection which could potentially mask suspicious fluctuations on ABP profiles. This study investigated the hyperhydration effect on haemoglobin concentration, reticulocyte percentage and OFF-hr score (an algorithm based on haemoglobin concentration and reticulocyte percentage), with and without recombinant human erythropoietin (rHuEPO) administration. A five-week clinical study performed; Baseline and rHuEPO Phase. Water and a sports drink were used as hyperhydration agents. To examine the hyperhydration effect on the normal ABP profile per volunteer, hyperhydration was implemented at 0, 24 and 48 hours during the baseline. During the rHuEPO phase, volunteers received Epoetin beta (3000 IU) with hyperhydration to be implemented at 0, 24 and 48 hours after drug administration. Blood and urine samples were collected and analysed according to WADA guidelines. No significant effect on ABP markers was observed due to hyperhydration at any time during the study. Pre- and post-hyperhydration data were not statistically different compared to individual baseline data. In conclusion, hyperhydration does not affect the ABP haematological markers under the examined conditions.


Subject(s)
Biomarkers/blood , Doping in Sports , Drinking Behavior , Hemoglobins/analysis , Reticulocyte Count , Adult , Biomarkers/urine , Energy Drinks , Erythropoietin/administration & dosage , Humans , Male , Recombinant Proteins/administration & dosage , Substance Abuse Detection/methods , Time Factors , Water
15.
Drug Test Anal ; 12(3): 323-330, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31889433

ABSTRACT

Exposure to either natural or simulated hypoxia induces hematological adaptations that may affect the parameters of the Athlete Biological Passport (ABP). The aim of the present study was to examine the effect of a novel, mixed hypoxic dose protocol on the likelihood of producing an atypical ABP finding. Ten well-trained middle-distance runners participated in a "live high, train low and high" (LHTLH) altitude training camp for 14 days. The participants spent ˜6 hr.d-1 at 3000-5400 m during waking hours and ˜10 h.d-1 overnight at 2400-3000 m simulated altitude. Venous blood samples were collected before (B0), and after 1 (D1), 4 (D4), 7 (D7), and 14 (D14) days of hypoxic exposure, and again 14 days post exposure (P14). Samples were analyzed for key parameters of the ABP including reticulocyte percentage (Ret%), hemoglobin concentration ([Hb]), and the OFF-score. The ABP adaptive model was administered at a specificity of 99% to test for atypical findings. We found significant changes in [Hb] and Ret% during the hypoxic intervention. Consequently, this led to ABP threshold deviations at 99% specificity in three participants. Only one of these was flagged as an "atypical passport finding" (ATPF) due to deviation of the OFF-score. When this sample was evaluated by ABP experts it was considered "normal". In conclusion, it is highly unlikely that the present hypoxic exposure protocol would have led to a citation for a doping violation according to WADA guidelines.


Subject(s)
Altitude , Athletes , Doping in Sports/methods , Hypoxia/blood , Teaching , Adult , Cross-Over Studies , Hemoglobins/metabolism , Humans , Male , Reticulocyte Count/statistics & numerical data , Single-Blind Method , Time Factors , Young Adult
16.
Drug Test Anal ; 12(5): 641-646, 2020 May.
Article in English | MEDLINE | ID: mdl-31800156

ABSTRACT

A summary of the preparations and the operation of the Athens Doping Control Laboratory for the 2004 Olympic Games is presented. The preparations involved an upgrade of the laboratory infrastructure: staff, equipment, space, new analytical methodologies. The operation of the laboratory during the Games created a major number of events in agreement with the International Olympic Committee's commitment to doping-free "clean" Games. This summary was created by the director of the Athens Doping Control Laboratory and reflected the author's outlook 15 years later.


Subject(s)
Doping in Sports/history , Substance Abuse Detection/history , Greece , History, 20th Century , History, 21st Century , Humans
17.
Sci Rep ; 9(1): 19889, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31882771

ABSTRACT

Genetic research of elite athletic performance has been hindered by the complex phenotype and the relatively small effect size of the identified genetic variants. The aims of this study were to identify genetic predisposition to elite athletic performance by investigating genetically-influenced metabolites that discriminate elite athletes from non-elite athletes and to identify those associated with endurance sports. By conducting a genome wide association study with high-resolution metabolomics profiling in 490 elite athletes, common variant metabolic quantitative trait loci (mQTLs) were identified and compared with previously identified mQTLs in non-elite athletes. Among the identified mQTLs, those associated with endurance metabolites were determined. Two novel genetic loci in FOLH1 and VNN1 are reported in association with N-acetyl-aspartyl-glutamate and Linoleoyl ethanolamide, respectively. When focusing on endurance metabolites, one novel mQTL linking androstenediol (3alpha, 17alpha) monosulfate and SULT2A1 was identified. Potential interactions between the novel identified mQTLs and exercise are highlighted. This is the first report of common variant mQTLs linked to elite athletic performance and endurance sports with potential applications in biomarker discovery in elite athletic candidates, non-conventional anti-doping analytical approaches and therapeutic strategies.


Subject(s)
Athletes , Genotype , Physical Endurance/genetics , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Female , Genome-Wide Association Study , Humans , Male
18.
Steroids ; 152: 108477, 2019 12.
Article in English | MEDLINE | ID: mdl-31446013

ABSTRACT

The population based Steroid Profile (SP) ratio of testosterone (T) and epitestosterone (E) has been considered as a biomarker approach to detect testosterone abuse in '80s. The contemporary Antidoping Laboratories apply the World Antidoping Agency (WADA) Technical Document (TD) for Endogenous Androgenic Anabolic Steroids (EAAS) in the analysis of SP during their screening. The SP Athlete Biological Passport (ABP) adaptive model uses the concentrations of the total of free and glucuronide conjugated forms of six EAASs concentrations and ratios measured by GC/MS. In the Antidoping Lab Qatar (ADLQ), the routine LC/MS screening method was used to quantitatively estimate the sulfate conjugated EAAS in the same analytical run as for the rest qualitative analytes. Seven sulfate EAAS were quantified for a number of routine antidoping male and female urine samples during screening. Concentrations, statistical parameters and selected ratios for the 6 EAAS, the 6 sulfate EAAS and 29 proposed ratios of concentrations from both EAAS and sulfate EAAS, which potentially used as SP ABP biomarkers, population reference limits and distributions have been estimated after the GC/MSMS analysis for EAAS and LC/Orbitrap/MS analysis for sulfate EAAS.


Subject(s)
Sports , Steroids/urine , Substance Abuse Detection , Sulfates/urine , Athletes , Female , Gas Chromatography-Mass Spectrometry , Humans , Male , Reference Values
19.
Scand J Med Sci Sports ; 29(10): 1489-1500, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31206799

ABSTRACT

The aim of the present study was to investigate if hyperhydration could influence the excretion and subsequent detection of budesonide (BDS) and its main metabolites (6ß-hydroxy-budesonide and 16α-hydroxy-prednisolone) during doping control analysis by leading to concentrations below the WADA reporting level (30 ng/mL). The influence of hyperhydration on the plasma and urinary pharmacokinetic (PK) profiles of BDS and metabolites was also examined. Seven healthy physically active non-smoking Caucasian males participated in a 15-day clinical study. BDS was administered orally at a single dose of 9 mg on Days 1, 7, and 13. Hyperhydration was applied in the morning on two consecutive days, that is, 0 and 24 hours after first fluid ingestion. Water and a commercial sports drink were used as hyperhydration agents (20 mL/kg body weight). Results showed no significant difference (P > 0.05, 95% CI) on plasma or urinary PK parameters under hyperhydration conditions for all the analytes. However, significant differences (P < 0.05, 95% CI) due to hyperhydration were observed on the urinary concentrations of BDS and metabolites. To compensate the dilution effect due to hyperhydration, different adjustment methods were applied based on specific gravity, urinary flow rate, and creatinine. All the applied methods were able to adjust the concentration values close to the baseline ones for each analyte; however, specific gravity was the optimum method in terms of effectiveness and practicability. Furthermore, no masking of the detection sensitivity of BDS or its metabolites was observed due to hyperhydration either in plasma or urine samples.


Subject(s)
Budesonide/pharmacokinetics , Drinking , Organism Hydration Status , Administration, Oral , Adult , Humans , Male , Middle Aged , Prednisolone/analogs & derivatives , Prednisolone/blood , Prednisolone/urine
20.
Rapid Commun Mass Spectrom ; 33(20): 1578-1588, 2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31240795

ABSTRACT

RATIONALE: Retroactive analysis of previously tested urine samples has become an important sports anti-doping tool. Retroactive reprocessing of old data files acquired from a generic screening procedure can reveal detection of initially unknown substances, like illegal drugs and newly identified metabolites. METHODS: To be able to efficiently search through hundreds to thousands of liquid chromatography high-resolution full-scan Orbitrap mass spectrometry data files of anti-doping samples, a combination of MetAlign and HR_MS_Search software has been developed. MetAlign reduced the data size ca 100-fold making possible local storage of a massive volume of data. RESULTS: The newly developed HR_MS_Search module can search through the reduced data files for new compounds (mass or isotope pattern) defined by mass windows and retention time windows. A search for 33 analytes in 940 reduced data files lasted 10 s. The output of the automatic search was compared to the standard manual routine evaluation. The results of searching were evaluated in terms of false negatives and false positives. The newly banned b2-agonist higenamine and its metabolite coclaurine were successfully searched in reduced data files originating from a testing period for which these substances were not banned, as an example of retroactive analysis. CONCLUSIONS: The freeware MetAlign software and its automatic searching module HR_MS_Search facilitated the retroactive reprocessing of reduced full-scan high-resolution liquid chromatography/mass spectrometry screening data files and created a new tool in anti-doping laboratories' network.


Subject(s)
Adrenergic beta-Agonists/urine , Alkaloids/urine , Chromatography, Liquid/methods , Mass Spectrometry/methods , Tetrahydroisoquinolines/urine , Adrenergic beta-Agonists/metabolism , Alkaloids/metabolism , Doping in Sports/prevention & control , Humans , Isoquinolines/urine , Substance Abuse Detection , Tetrahydroisoquinolines/metabolism , Urinalysis
SELECTION OF CITATIONS
SEARCH DETAIL
...