Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropharmacology ; 160: 107791, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31553898

ABSTRACT

Deficits in cognitive flexibility, i.e. the ability to modify behavior in response to changes in the environment, are present in several psychiatric disorders and are often refractory to treatment. However, improving treatment response has been hindered by a lack of understanding of the neurobiology of cognitive flexibility. Using a rat model of chronic stress (chronic intermittent cold stress, CIC) that produces selective deficits in reversal learning, a form of cognitive flexibility dependent on orbitofrontal cortex (OFC) function, we have previously shown that JAK2 signaling is required for optimal reversal learning. In this study we explore the molecular basis of those effects. We show that, within the OFC, CIC stress reduces the levels of phosphorylated JAK2 and of ciliary neurotrophic factor (CNTF), a promoter of neuronal survival and an activator of JAK2 signaling, and that neutralizing endogenous CNTF with an intra-OFC microinjection of a specific antibody is sufficient to produce reversal-learning deficits similar to stress. Intra-OFC delivery of recombinant CNTF to CIC-stressed rats, at a dose that induces JAK2 and Akt but not STAT3 or ERK, ameliorates reversal-learning deficits, and Akt blockade prevents the positive effects of CNTF. Further analysis revealed that CNTF may exert its beneficial effects by inhibiting GSK3ß, a substrate of Akt and a regulator of protein degradation. We also revealed a novel mechanism of CNTF action through modulation of p38/Mnk1/eIF4E signaling. This cascade controls translation of select mRNAs, including those encoding several plasticity-related proteins. Thus, we suggest that CNTF-driven JAK2 signaling corrects stress-induced reversal learning deficits by modulating the steady-state levels of plasticity-related proteins in the OFC.


Subject(s)
Ciliary Neurotrophic Factor/pharmacology , Learning Disabilities/drug therapy , Prefrontal Cortex/drug effects , Reversal Learning/drug effects , Stress, Psychological/psychology , Animals , Ciliary Neurotrophic Factor/administration & dosage , Ciliary Neurotrophic Factor/metabolism , Cognition/drug effects , Cold Temperature , Female , Janus Kinase 2/metabolism , Male , Rats , Rats, Sprague-Dawley , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects
2.
J Pharmacol Exp Ther ; 371(2): 268-277, 2019 11.
Article in English | MEDLINE | ID: mdl-31481515

ABSTRACT

Eating disorders such as anorexia typically emerge during adolescence, are characterized by engagement in compulsive and detrimental behaviors, and are often comorbid with neuropsychiatric disorders and drug abuse. No effective treatments exist. Moreover, anorexia lacks adolescent animal models, contributing to a poor understanding of underlying age-specific neurophysiological disruptions. To evaluate the contribution of dopaminergic signaling to the emergence of anorexia-related behaviors during the vulnerable adolescent period, we applied an established adult activity-based anorexia (ABA) paradigm (food restriction plus unlimited exercise access for 4 to 5 days) to adult and adolescent rats of both sexes. At the end of the paradigm, measures of plasma volume, blood hormone levels, dopamine transporter (DAT) expression and function, acute cocaine-induced locomotion, and brain water weight were taken. Adolescents were dramatically more affected by the ABA paradigm than adults in all measures. In vivo chronoamperometry and cocaine locomotor responses revealed sex-specific changes in adolescent DAT function after ABA that were independent of DAT expression differences. Hematocrit, insulin, ghrelin, and corticosterone levels did not resemble shifts typically observed in patients with anorexia, though decreases in leptin levels aligned with human reports. These findings are the first to suggest that food restriction in conjunction with excessive exercise sex-dependently and age-specifically modulate DAT functional plasticity during adolescence. The adolescent vulnerability to this relatively short manipulation, combined with blood measures, evidence need for an optimized age-appropriate ABA paradigm with greater face and predictive validity for the study of the pathophysiology and treatment of anorexia. SIGNIFICANCE STATEMENT: Adolescent rats exhibit a distinctive, sex-specific plasticity in dopamine transporter function and cocaine response after food restriction and exercise access; this plasticity is both absent in adults and not attributable to changes in dopamine transporter expression levels. These novel findings may help explain sex differences in vulnerability to eating disorders and drug abuse during adolescence.


Subject(s)
Anorexia/etiology , Anorexia/metabolism , Caloric Restriction , Dopamine Plasma Membrane Transport Proteins/metabolism , Locomotion/physiology , Physical Conditioning, Animal/physiology , Age Factors , Animals , Caloric Restriction/methods , Female , Male , Physical Conditioning, Animal/methods , Random Allocation , Rats , Rats, Sprague-Dawley , Sex Factors
3.
Front Behav Neurosci ; 13: 271, 2019.
Article in English | MEDLINE | ID: mdl-31920580

ABSTRACT

Stress-related neuropsychiatric (e.g., anxiety, depression) and cardiovascular diseases are frequently comorbid, though discerning the directionality of their association has been challenging. One of the most controllable risk factors for cardiovascular disease is salt intake. Though high salt intake is implicated in neuropsychiatric diseases, its direct neurobehavioral effects have seldom been explored. We reported that elevated salt intake in mice augments neuroinflammation, particularly after an acute stressor. Here, we explored how high salt consumption affected behavioral responses of mice to mildly arousing environmental and social tests, then assessed levels of the stress-related hormone corticosterone. Unexpectedly, anxiety-related behaviors in the elevated plus maze, open field, and marble burying test were unaffected by increased salt intake. However, nest building was diminished in mice consuming high salt, and voluntary social interaction was elevated, suggesting reduced engagement in ethologically-relevant behaviors that promote survival by attenuating threat exposure. Moreover, we observed significant positive correlations between social preference and subsequent corticosterone only in mice consuming increased salt, as well as negative correlations between open arm exploration in the elevated plus maze and corticosterone selectively in mice in the highest salt condition. Thus, heightened salt consumption reduces behavioral inhibition under relatively low-threat conditions, and enhances circulating corticosterone proportional to specific behavioral shifts. Considering the adverse health consequences of high salt intake, combined with evidence that increased salt consumption impairs inhibition of context-inappropriate behaviors, we suggest that prolonged high salt intake likely promulgates maladaptive behavioral and cardiovascular responses to perceived stressors that may explain some of the prevalent comorbidity between cardiovascular and neuropsychiatric diseases.

4.
Eur J Neurosci ; 2018 May 24.
Article in English | MEDLINE | ID: mdl-29797618

ABSTRACT

Originally, uptake-mediated termination of monoamine (e.g., serotonin and dopamine) signalling was believed to only occur via high-affinity, low-capacity transporters ("uptake1 ") such as the serotonin or dopamine transporters, respectively. Now, the important contribution of a second low-affinity, high-capacity class of biogenic amine transporters has been recognised, particularly in circumstances when uptake1 transporter function is reduced (e.g., antidepressant treatment). Pharmacologic or genetic reductions in uptake1 function can change locomotor, anxiety-like or stress-coping behaviours. Comparable behavioural investigations into reduced low-affinity, high-capacity transporter function are lacking, in part, due to a current dearth of drugs that selectively target particular low-affinity, high-capacity transporters, such as the plasma membrane monoamine transporter. Therefore, the most direct approach involves constitutive genetic knockout of these transporters. Other groups have reported that knockout of the low-affinity, high-capacity organic cation transporters 2 or 3 alters anxiety-like and stress-coping behaviours, but none have assessed behaviours in plasma membrane monoamine transporter knockout mice. Here, we evaluated adult male and female plasma membrane monoamine transporter wild-type, heterozygous and knockout mice in locomotor, anxiety-like and stress-coping behavioural tests. A mild enhancement of anxiety-related behaviour was noted in heterozygous mice. Active-coping behaviour was modestly and selectively increased in female knockout mice. These subtle behavioural changes support a supplemental role of plasma membrane monoamine transporter in serotonin and dopamine uptake, and suggest sex differences in transporter function should be examined more closely in future investigations.

SELECTION OF CITATIONS
SEARCH DETAIL
...