Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Biochim Biophys Acta Gen Subj ; 1868(9): 130665, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38969256

ABSTRACT

BACKGROUND: The malaria parasite Plasmodium falciparum replicates within red blood cells, then ruptures the cell in a process called egress in order to continue its life cycle. Egress is regulated by a proteolytic cascade involving an essential parasite subtilisin-like serine protease called SUB1. Maturation of SUB1 initiates in the parasite endoplasmic reticulum with autocatalytic cleavage of an N-terminal prodomain (p31), which initially remains non-covalently bound to the catalytic domain, p54. Further trafficking of the p31-p54 complex results in formation of a terminal p47 form of the SUB1 catalytic domain. Recent work has implicated a parasite aspartic protease, plasmepsin X (PMX), in maturation of the SUB1 p31-p54 complex through controlled cleavage of the prodomain p31. METHODS: Here we use biochemical and enzymatic analysis to examine the activation of SUB1 by PMX. RESULTS: We show that both p31 and p31-p54 are largely dimeric under the relatively acidic conditions to which they are likely exposed to PMX in the parasite. We confirm the sites within p31 that are cleaved by PMX and determine the order of cleavage. We find that cleavage by PMX results in rapid loss of the capacity of p31 to act as an inhibitor of SUB1 catalytic activity and we directly demonstrate that exposure to PMX of recombinant p31-p54 complex activates SUB1 activity. CONCLUSIONS: Our results confirm that precise, PMX-mediated cleavage of the SUB1 prodomain activates SUB1 enzyme activity. GENERAL SIGNIFICANCE: Our findings elucidate the role of PMX in activation of SUB1, a key effector of malaria parasite egress.


Subject(s)
Aspartic Acid Endopeptidases , Plasmodium falciparum , Protozoan Proteins , Plasmodium falciparum/enzymology , Plasmodium falciparum/metabolism , Aspartic Acid Endopeptidases/metabolism , Aspartic Acid Endopeptidases/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/chemistry , Proteolysis , Humans , Subtilisins/metabolism , Catalytic Domain , Protein Domains , Malaria, Falciparum/parasitology , Malaria, Falciparum/metabolism , Erythrocytes/parasitology , Erythrocytes/metabolism
2.
Mol Cell ; 83(22): 4017-4031.e9, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37820732

ABSTRACT

The MCM motor of the replicative helicase is loaded onto origin DNA as an inactive double hexamer before replication initiation. Recruitment of activators GINS and Cdc45 upon S-phase transition promotes the assembly of two active CMG helicases. Although work with yeast established the mechanism for origin activation, how CMG is formed in higher eukaryotes is poorly understood. Metazoan Downstream neighbor of Son (DONSON) has recently been shown to deliver GINS to MCM during CMG assembly. What impact this has on the MCM double hexamer is unknown. Here, we used cryoelectron microscopy (cryo-EM) on proteins isolated from replicating Xenopus egg extracts to identify a double CMG complex bridged by a DONSON dimer. We find that tethering elements mediating complex formation are essential for replication. DONSON reconfigures the MCM motors in the double CMG, and primordial dwarfism patients' mutations disrupting DONSON dimerization affect GINS and MCM engagement in human cells and DNA synthesis in Xenopus egg extracts.


Subject(s)
Cell Cycle Proteins , DNA Helicases , Nuclear Proteins , Animals , Humans , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/metabolism , Cryoelectron Microscopy , DNA/genetics , DNA/metabolism , DNA Helicases/metabolism , DNA Replication , Minichromosome Maintenance Proteins/genetics , Minichromosome Maintenance Proteins/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Saccharomyces cerevisiae/genetics , Enzyme Activation
3.
bioRxiv ; 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37609190

ABSTRACT

To increase antibody affinity against pathogens, positively selected GC-B cells initiate cell division in the light zone (LZ) of germinal centres (GCs). Among those, higher-affinity clones migrate to the dark zone (DZ) and vigorously proliferate by relying on oxidative phosphorylation (OXPHOS). However, it remains unknown how positively selected GC-B cells adapt their metabolism for cell division in the glycolysis-dominant, cell cycle arrest-inducing, hypoxic LZ microenvironment. Here, we show that microRNA (miR)-155 mediates metabolic reprogramming during positive selection to protect high-affinity clones. Transcriptome examination and mass spectrometry analysis revealed that miR-155 regulates H3K36me2 levels by directly repressing hypoxia-induced histone lysine demethylase, Kdm2a. This is indispensable for enhancing OXPHOS through optimizing the expression of vital nuclear mitochondrial genes under hypoxia. The miR-155-Kdm2a interaction is crucial to prevent excessive production of reactive oxygen species and apoptosis. Thus, miR-155-mediated epigenetic regulation promotes mitochondrial fitness in high-affinity clones, ensuring their expansion and consequently affinity maturation.

4.
Sci Rep ; 13(1): 1889, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36732563

ABSTRACT

P110α is a member of the phosphoinositide 3-kinase (PI3K) enzyme family that functions downstream of RAS. RAS proteins contribute to the activation of p110α by interacting directly with its RAS binding domain (RBD), resulting in the promotion of many cellular functions such as cell growth, proliferation and survival. Previous work from our lab has highlighted the importance of the p110α/RAS interaction in tumour initiation and growth. Here we report the discovery and characterisation of a cyclic peptide inhibitor (cyclo-CRVLIR) that interacts with the p110α-RBD and blocks its interaction with KRAS. cyclo-CRVLIR was discovered by screening a "split-intein cyclisation of peptides and proteins" (SICLOPPS) cyclic peptide library. The primary cyclic peptide hit from the screen initially showed a weak affinity for the p110α-RBD (Kd about 360 µM). However, two rounds of amino acid substitution led to cyclo-CRVLIR, with an improved affinity for p110α-RBD in the low µM (Kd 3 µM). We show that cyclo-CRVLIR binds selectively to the p110α-RBD but not to KRAS or the structurally-related RAF-RBD. Further, using biophysical, biochemical and cellular assays, we show that cyclo-CRVLIR effectively blocks the p110α/KRAS interaction in a dose dependent manner and reduces phospho-AKT levels in several oncogenic KRAS cell lines.


Subject(s)
Phosphatidylinositol 3-Kinase , Signal Transduction , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Peptides, Cyclic/pharmacology , Peptides, Cyclic/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism
5.
Methods Enzymol ; 667: 455-505, 2022.
Article in English | MEDLINE | ID: mdl-35525551

ABSTRACT

HER3 is a potent oncogenic growth factor receptor belonging to the human epidermal growth factor (HER/EGFR) family of receptor tyrosine kinases. In contrast to other EGFR family members, HER3 is a pseudokinase, lacking functional kinase activity. As such, efforts to develop small molecule tyrosine kinase inhibitors against this family member have been limited. In response to HER3-specific growth factors such as neuregulin (NRG, also known as heregulin or HRG), HER3 must couple with catalytically active family members, including its preferred partner HER2. Dimerization of the intracellular HER2:HER3 kinase domains is a critical part of the activation mechanism and HER3 plays a specialized role as an allosteric activator of the active HER2 kinase partner. Intriguingly, many pseudokinases retain functionally important nucleotide binding capacity, despite loss of kinase activity. We demonstrated that occupation of the nucleotide pocket of the pseudokinase HER3 retains functional importance for growth factor signaling through oncogenic HER2:HER3 heterodimers. Mutation of the HER3 nucleotide pocket both disrupts signaling and disrupts HER2:HER3 dimerization. Conversely, ATP competitive drugs which bind to HER3, but not HER2, can stabilize HER2:HER3 dimers, induce signaling and promote cell growth in breast cancer models. This indicates a nucleotide-dependent conformational role for the HER3 kinase domain. Critically, our recent proof-of-concept work demonstrated that HER3-directed small molecule inhibitors can also disrupt HER2:HER3 dimerization and signaling, supporting the prospect that HER3 can be a direct drug target despite its lack of intrinsic activity. In this chapter we will describe methods for identifying and validating small molecule inhibitors against the HER3 pseudokinase.


Subject(s)
Receptor, ErbB-2 , Receptor, ErbB-3 , Humans , Nucleotides/metabolism , Phosphorylation , Receptor, ErbB-2/chemistry , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Receptor, ErbB-3/genetics , Receptor, ErbB-3/metabolism , Signal Transduction/physiology
6.
Elife ; 102021 01 08.
Article in English | MEDLINE | ID: mdl-33416497

ABSTRACT

Shprintzen-Goldberg syndrome (SGS) is a multisystemic connective tissue disorder, with considerable clinical overlap with Marfan and Loeys-Dietz syndromes. These syndromes have commonly been associated with enhanced TGF-ß signaling. In SGS patients, heterozygous point mutations have been mapped to the transcriptional co-repressor SKI, which is a negative regulator of TGF-ß signaling that is rapidly degraded upon ligand stimulation. The molecular consequences of these mutations, however, are not understood. Here we use a combination of structural biology, genome editing, and biochemistry to show that SGS mutations in SKI abolish its binding to phosphorylated SMAD2 and SMAD3. This results in stabilization of SKI and consequently attenuation of TGF-ß responses, both in knockin cells expressing an SGS mutation and in fibroblasts from SGS patients. Thus, we reveal that SGS is associated with an attenuation of TGF-ß-induced transcriptional responses, and not enhancement, which has important implications for other Marfan-related syndromes.


Subject(s)
Arachnodactyly/genetics , Craniosynostoses/genetics , DNA-Binding Proteins/genetics , Marfan Syndrome/genetics , Mutation , Proto-Oncogene Proteins/genetics , Transforming Growth Factor beta/genetics , DNA-Binding Proteins/metabolism , Female , Humans , Male , Proto-Oncogene Proteins/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism
7.
Biochem J ; 477(17): 3329-3347, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32815546

ABSTRACT

Despite being catalytically defective, pseudokinases are typically essential players of cellular signalling, acting as allosteric regulators of their active counterparts. Deregulation of a growing number of pseudokinases has been linked to human diseases, making pseudokinases therapeutic targets of interest. Pseudokinases can be dynamic, adopting specific conformations critical for their allosteric function. Interfering with their allosteric role, with small molecules that would lock pseudokinases in a conformation preventing their productive partner interactions, is an attractive therapeutic strategy to explore. As a well-known allosteric activator of epidermal growth factor receptor family members, and playing a major part in cancer progression, the pseudokinase HER3 is a relevant context in which to address the potential of pseudokinases as drug targets for the development of allosteric inhibitors. In this proof-of-concept study, we developed a multiplex, medium-throughput thermal shift assay screening strategy to assess over 100 000 compounds and identify selective small molecule inhibitors that would trap HER3 in a conformation which is unfavourable for the formation of an active HER2-HER3 heterodimer. As a proof-of-concept compound, AC3573 bound with some specificity to HER3 and abrogated HER2-HER3 complex formation and downstream signalling in cells. Our study highlights the opportunity to identify new molecular mechanisms of action interfering with the biological function of pseudokinases.


Subject(s)
Protein Kinase Inhibitors , Receptor, ErbB-3 , Allosteric Regulation , Animals , CHO Cells , Cricetulus , Drug Screening Assays, Antitumor , Humans , Proof of Concept Study , Protein Binding , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Receptor, ErbB-2/chemistry , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Receptor, ErbB-3/antagonists & inhibitors , Receptor, ErbB-3/chemistry , Receptor, ErbB-3/genetics , Receptor, ErbB-3/metabolism
8.
Wellcome Open Res ; 5: 20, 2020.
Article in English | MEDLINE | ID: mdl-32587898

ABSTRACT

Targeting the interaction of proteins with weak binding affinities or low solubility represents a particular challenge for drug screening. The NanoLuc â ® Binary Technology (NanoBiT â ®) was originally developed to detect protein-protein interactions in live mammalian cells. Here we report the successful translation of the NanoBit cellular assay into a biochemical, cell-free format using mammalian cell lysates. We show that the assay is suitable for the detection of both strong and weak protein interactions such as those involving the binding of RAS oncoproteins to either RAF or phosphoinositide 3-kinase (PI3K) effectors respectively, and that it is also effective for the study of poorly soluble protein domains such as the RAS binding domain of PI3K. Furthermore, the RAS interaction assay is sensitive and responds to both strong and weak RAS inhibitors. Our data show that the assay is robust, reproducible, cost-effective, and can be adapted for small and large-scale screening approaches. The NanoBit Biochemical Assay offers an attractive tool for drug screening against challenging protein-protein interaction targets, including the interaction of RAS with PI3K.

9.
Immunity ; 51(5): 813-825.e4, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31628053

ABSTRACT

Butyrophilin (BTN) and butyrophilin-like (BTNL/Btnl) heteromers are major regulators of human and mouse γδ T cell subsets, but considerable contention surrounds whether they represent direct γδ T cell receptor (TCR) ligands. We demonstrate that the BTNL3 IgV domain binds directly and specifically to a human Vγ4+ TCR, "LES" with an affinity (∼15-25 µM) comparable to many αß TCR-peptide major histocompatibility complex interactions. Mutations in germline-encoded Vγ4 CDR2 and HV4 loops, but not in somatically recombined CDR3 loops, drastically diminished binding and T cell responsiveness to BTNL3-BTNL8-expressing cells. Conversely, CDR3γ and CDR3δ loops mediated LES TCR binding to endothelial protein C receptor, a clonally restricted autoantigen, with minimal CDR1, CDR2, or HV4 contributions. Thus, the γδ TCR can employ two discrete binding modalities: a non-clonotypic, superantigen-like interaction mediating subset-specific regulation by BTNL/BTN molecules and CDR3-dependent, antibody-like interactions mediating adaptive γδ T cell biology. How these findings might broadly apply to γδ T cell regulation is also examined.


Subject(s)
Antigens/immunology , Butyrophilins/metabolism , Clonal Selection, Antigen-Mediated/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Amino Acid Sequence , Animals , Antigens/chemistry , Butyrophilins/chemistry , Cell Line , Epitopes/immunology , Germ Cells/metabolism , Humans , Immunoglobulin Variable Region/chemistry , Immunoglobulin Variable Region/immunology , Immunoglobulin Variable Region/metabolism , Ligands , Mice , Protein Binding/immunology , Protein Interaction Domains and Motifs , Receptors, Antigen, T-Cell, gamma-delta/chemistry , Structure-Activity Relationship
10.
Life Sci Alliance ; 2(4)2019 08.
Article in English | MEDLINE | ID: mdl-31371524

ABSTRACT

Centromeric chromatin in fission yeast is distinguished by the presence of nucleosomes containing the histone H3 variant Cnp1CENP-A Cell cycle-specific deposition of Cnp1 requires the Mis16-Mis18-Mis19 complex, which is thought to direct recruitment of Scm3-chaperoned Cnp1/histone H4 dimers to DNA. Here, we present the structure of the essential Mis18 partner protein Mis19 and describe its interaction with Mis16, revealing a bipartite-binding site. We provide data on the stoichiometry and overall architecture of the complex and provide detailed insights into the Mis18-Mis19 interface.


Subject(s)
Carrier Proteins/metabolism , Multiprotein Complexes/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/metabolism , Binding Sites , Carrier Proteins/chemistry , Carrier Proteins/genetics , Centromere/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Histones/chemistry , Histones/metabolism , Models, Molecular , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Mutation , Protein Binding , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/chemistry , Schizosaccharomyces pombe Proteins/genetics
11.
J Cell Sci ; 132(8)2019 04 25.
Article in English | MEDLINE | ID: mdl-30872454

ABSTRACT

The elaboration of polarity is central to organismal development and to the maintenance of functional epithelia. Among the controls determining polarity are the PAR proteins, PAR6, aPKCι and PAR3, regulating both known and unknown effectors. Here, we identify FARP2 as a 'RIPR' motif-dependent partner and substrate of aPKCι that is required for efficient polarisation and junction formation. Binding is conferred by a FERM/FA domain-kinase domain interaction and detachment promoted by aPKCι-dependent phosphorylation. FARP2 is shown to promote GTP loading of Cdc42, which is consistent with it being involved in upstream regulation of the polarising PAR6-aPKCι complex. However, we show that aPKCι acts to promote the localised activity of FARP2 through phosphorylation. We conclude that this aPKCι-FARP2 complex formation acts as a positive feedback control to drive polarisation through aPKCι and other Cdc42 effectors.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Epithelial Cells/cytology , Guanine Nucleotide Exchange Factors/metabolism , Protein Kinase C/metabolism , Tight Junctions/metabolism , cdc42 GTP-Binding Protein/metabolism , Caco-2 Cells , Cell Polarity , Guanine Nucleotide Exchange Factors/genetics , HCT116 Cells , Humans , Phosphorylation
12.
Elife ; 72018 09 27.
Article in English | MEDLINE | ID: mdl-30260317

ABSTRACT

Damage-associated molecular patterns (DAMPs) are molecules exposed or released by dead cells that trigger or modulate immunity and tissue repair. In vertebrates, the cytoskeletal component F-actin is a DAMP specifically recognised by DNGR-1, an innate immune receptor. Previously we suggested that actin is also a DAMP in Drosophila melanogaster by inducing STAT-dependent genes (Srinivasan et al., 2016). Here, we revise that conclusion and report that α-actinin is far more potent than actin at inducing the same STAT response and can be found in trace amounts in actin preparations. Recombinant expression of actin or α-actinin in bacteria demonstrated that only α-actinin could drive the expression of STAT target genes in Drosophila. The response to injected α-actinin required the same signalling cascade that we had identified in our previous work using actin preparations. Taken together, these data indicate that α-actinin rather than actin drives STAT activation when injected into Drosophila.


Subject(s)
Actinin/pharmacology , Actins/pharmacology , Drosophila Proteins/metabolism , Gene Expression Regulation/drug effects , STAT Transcription Factors/metabolism , Actinin/administration & dosage , Actinin/genetics , Actins/administration & dosage , Actins/genetics , Animals , Animals, Genetically Modified , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Recombinant Proteins/administration & dosage , Recombinant Proteins/pharmacology , Signal Transduction/drug effects , Signal Transduction/genetics
13.
Elife ; 72018 05 01.
Article in English | MEDLINE | ID: mdl-29712619

ABSTRACT

While targeted therapy against HER2 is an effective first-line treatment in HER2+ breast cancer, acquired resistance remains a clinical challenge. The pseudokinase HER3, heterodimerisation partner of HER2, is widely implicated in the resistance to HER2-mediated therapy. Here, we show that lapatinib, an ATP-competitive inhibitor of HER2, is able to induce proliferation cooperatively with the HER3 ligand neuregulin. This counterintuitive synergy between inhibitor and growth factor depends on their ability to promote atypical HER2-HER3 heterodimerisation. By stabilising a particular HER2 conformer, lapatinib drives HER2-HER3 kinase domain heterocomplex formation. This dimer exists in a head-to-head orientation distinct from the canonical asymmetric active dimer. The associated clustering observed for these dimers predisposes to neuregulin responses, affording a proliferative outcome. Our findings provide mechanistic insights into the liabilities involved in targeting kinases with ATP-competitive inhibitors and highlight the complex role of protein conformation in acquired resistance.


Subject(s)
Breast Neoplasms/metabolism , Cell Proliferation , Lapatinib/pharmacology , Neuregulin-1/metabolism , Protein Multimerization , Receptor, ErbB-2/chemistry , Receptor, ErbB-3/chemistry , Adenosine Triphosphate/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Female , Humans , Phosphorylation , Protein Conformation , Protein Kinase Inhibitors/pharmacology , Receptor, ErbB-2/metabolism , Receptor, ErbB-3/metabolism , Signal Transduction , Tumor Cells, Cultured
14.
Life Sci Alliance ; 1(6): e201800118, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30623173

ABSTRACT

Cyclin G-associated kinase (GAK) is a ubiquitous serine/threonine kinase that facilitates clathrin uncoating during vesicle trafficking. GAK phosphorylates a coat adaptor component, AP2M1, to help achieve this function. GAK is also implicated in Parkinson's disease through genome-wide association studies. However, GAK's role in mammalian neurons remains unclear, and insight may come from identification of further substrates. Employing a chemical genetics method, we show here that the sodium potassium pump (Na+/K+-ATPase) α-subunit Atp1a3 is a GAK target and that GAK regulates Na+/K+-ATPase trafficking to the plasma membrane. Whole-cell patch clamp recordings from CA1 pyramidal neurons in GAK conditional knockout mice show a larger change in resting membrane potential when exposed to the Na+/K+-ATPase blocker ouabain, indicating compromised Na+/K+-ATPase function in GAK knockouts. Our results suggest a modulatory role for GAK via phosphoregulation of substrates such as Atp1a3 during cargo trafficking.

15.
Circ Res ; 122(2): 231-245, 2018 01 19.
Article in English | MEDLINE | ID: mdl-29233846

ABSTRACT

RATIONALE: The mechanistic foundation of vascular maturation is still largely unknown. Several human pathologies are characterized by deregulated angiogenesis and unstable blood vessels. Solid tumors, for instance, get their nourishment from newly formed structurally abnormal vessels which present wide and irregular interendothelial junctions. Expression and clustering of the main endothelial-specific adherens junction protein, VEC (vascular endothelial cadherin), upregulate genes with key roles in endothelial differentiation and stability. OBJECTIVE: We aim at understanding the molecular mechanisms through which VEC triggers the expression of a set of genes involved in endothelial differentiation and vascular stabilization. METHODS AND RESULTS: We compared a VEC-null cell line with the same line reconstituted with VEC wild-type cDNA. VEC expression and clustering upregulated endothelial-specific genes with key roles in vascular stabilization including claudin-5, vascular endothelial-protein tyrosine phosphatase (VE-PTP), and von Willebrand factor (vWf). Mechanistically, VEC exerts this effect by inhibiting polycomb protein activity on the specific gene promoters. This is achieved by preventing nuclear translocation of FoxO1 (Forkhead box protein O1) and ß-catenin, which contribute to PRC2 (polycomb repressive complex-2) binding to promoter regions of claudin-5, VE-PTP, and vWf. VEC/ß-catenin complex also sequesters a core subunit of PRC2 (Ezh2 [enhancer of zeste homolog 2]) at the cell membrane, preventing its nuclear translocation. Inhibition of Ezh2/VEC association increases Ezh2 recruitment to claudin-5, VE-PTP, and vWf promoters, causing gene downregulation. RNA sequencing comparison of VEC-null and VEC-positive cells suggested a more general role of VEC in activating endothelial genes and triggering a vascular stability-related gene expression program. In pathological angiogenesis of human ovarian carcinomas, reduced VEC expression paralleled decreased levels of claudin-5 and VE-PTP. CONCLUSIONS: These data extend the knowledge of polycomb-mediated regulation of gene expression to endothelial cell differentiation and vessel maturation. The identified mechanism opens novel therapeutic opportunities to modulate endothelial gene expression and induce vascular normalization through pharmacological inhibition of the polycomb-mediated repression system.


Subject(s)
Antigens, CD/biosynthesis , Cadherins/biosynthesis , Endothelium, Vascular/metabolism , Epigenesis, Genetic/physiology , Animals , Antigens, CD/genetics , Cadherins/genetics , Cell Membrane/genetics , Cell Membrane/metabolism , Cell Membrane/ultrastructure , Endothelium, Vascular/ultrastructure , Gene Expression , HEK293 Cells , Humans , Mice , Polycomb-Group Proteins/metabolism , Protein Binding/physiology
17.
PLoS One ; 10(8): e0133246, 2015.
Article in English | MEDLINE | ID: mdl-26248330

ABSTRACT

A protocol is presented for the isolation of native mammalian chromatin as fibers of 25-250 nucleosomes under conditions that preserve the natural epigenetic signature. The material is composed almost exclusively of histones and DNA and conforms to the structure expected by electron microscopy. All sequences probed for were retained, indicating that the material is representative of the majority of the genome. DNA methylation marks and histone marks resembled the patterns observed in vivo. Importantly, nucleosome positions also remained largely unchanged, except on CpG islands, where nucleosomes were found to be unstable. The technical challenges of reconstituting biochemical reactions with native mammalian chromatin are discussed.


Subject(s)
Chromatin/metabolism , Animals , Cell Line , Chromatin/chemistry , Chromatin/isolation & purification , Chromatin Immunoprecipitation , CpG Islands , DNA Methylation , Histones/genetics , Histones/metabolism , Liver/metabolism , Mice , Microscopy, Electron , Nucleosomes/chemistry , Nucleosomes/metabolism , Rats
18.
Cell Rep ; 8(6): 1894-1904, 2014 Sep 25.
Article in English | MEDLINE | ID: mdl-25242331

ABSTRACT

The RET receptor tyrosine kinase is essential to vertebrate development and implicated in multiple human diseases. RET binds a cell surface bipartite ligand comprising a GDNF family ligand and a GFRα coreceptor, resulting in RET transmembrane signaling. We present a hybrid structural model, derived from electron microscopy (EM) and low-angle X-ray scattering (SAXS) data, of the RET extracellular domain (RET(ECD)), GDNF, and GFRα1 ternary complex, defining the basis for ligand recognition. RET(ECD) envelopes the dimeric ligand complex through a composite binding site comprising four discrete contact sites. The GFRα1-mediated contacts are crucial, particularly close to the invariant RET calcium-binding site, whereas few direct contacts are made by GDNF, explaining how distinct ligand/coreceptor pairs are accommodated. The RET(ECD) cysteine-rich domain (CRD) contacts both ligand components and makes homotypic membrane-proximal interactions occluding three different antibody epitopes. Coupling of these CRD-mediated interactions suggests models for ligand-induced RET activation and ligand-independent oncogenic deregulation.


Subject(s)
Cell Membrane/metabolism , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Proto-Oncogene Proteins c-ret/metabolism , Zebrafish Proteins/metabolism , Amino Acid Sequence , Animals , Antibodies/immunology , Binding Sites , CHO Cells , Cricetinae , Cricetulus , Epitopes/immunology , Glial Cell Line-Derived Neurotrophic Factor/chemistry , Glial Cell Line-Derived Neurotrophic Factor Receptors/chemistry , Glial Cell Line-Derived Neurotrophic Factor Receptors/genetics , Humans , Molecular Sequence Data , Protein Binding , Protein Structure, Tertiary , Proto-Oncogene Proteins c-ret/chemistry , Proto-Oncogene Proteins c-ret/genetics , Rats , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Sequence Alignment , Zebrafish , Zebrafish Proteins/chemistry , Zebrafish Proteins/genetics
19.
Xenobiotica ; 44(11): 1014-25, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24831541

ABSTRACT

1. The metabolism, pharmacokinetics, excretion and tissue distribution of a hepatitis C NS3/NS4 protease inhibitor, faldaprevir, were studied in rats following a single 2 mg/kg intravenous or 10 mg/kg oral administration of [(14)C]-faldaprevir. 2. Following intravenous dosing, the terminal elimination t1/2 of plasma radioactivity was 1.75 h (males) and 1.74 h (females). Corresponding AUC0-∞, CL and Vss were 1920 and 1900 ngEq · h/mL, 18.3 and 17.7 mL/min/kg and 2.32 and 2.12 mL/kg for males and females, respectively. 3. After oral dosing, t1/2 and AUC0-∞ for plasma radioactivity were 1.67 and 1.77 h and 11 300 and 17 900 ngEq · h/mL for males and females, respectively. 4. In intact rats, ≥90.17% dose was recovered in feces and only ≤1.08% dose was recovered in urine for both iv and oral doses. In bile cannulated rats, 54.95, 34.32 and 0.27% dose was recovered in feces, bile and urine, respectively. 5. Glucuronidation plays a major role in the metabolism of faldaprevir with minimal Phase I metabolism. 6. Radioactivity was rapidly distributed into tissues after the oral dose with peak concentrations of radioactivity in most tissues at 6 h post-dose. The highest levels of radioactivity were observed in liver, lung, kidney, small intestine and adrenal gland.


Subject(s)
Oligopeptides/pharmacokinetics , Protease Inhibitors/pharmacokinetics , Thiazoles/pharmacokinetics , Administration, Oral , Aminoisobutyric Acids , Animals , Bile , Biotransformation , Carbon Radioisotopes/analysis , Feces , Female , Injections, Intravenous , Leucine/analogs & derivatives , Male , Proline/analogs & derivatives , Quinolines , Rats , Rats, Long-Evans , Rats, Sprague-Dawley , Urine
20.
Antimicrob Agents Chemother ; 58(4): 2369-76, 2014.
Article in English | MEDLINE | ID: mdl-24514093

ABSTRACT

The pharmacokinetics, mass balance, and metabolite profiles of faldaprevir, a selective peptide-mimetic hepatitis C virus NS3/NS4 protease inhibitor, were assessed at steady state in 7 healthy male subjects. Subjects received oral doses of 480 mg faldaprevir on day 1, followed by 240 mg faldaprevir on days 2 to 8 and 10 to 15. [14C]faldaprevir (240 mg containing 100 µCi) was administered on day 9. Blood, urine, feces, and saliva samples were collected at intervals throughout the study. Metabolite profiling was performed using radiochromatography, and metabolite identification was conducted using liquid chromatography-tandem mass spectrometry. The overall recovery of radioactivity was high (98.8%), with the majority recovered from feces (98.7%). There was minimal radioactivity in urine (0.113%) and saliva. Circulating radioactivity was predominantly confined to plasma with minimal partitioning into red blood cells. The terminal half-life of radioactivity in plasma was approximately 23 h with no evidence of any long-lasting metabolites. Faldaprevir was the predominant circulating form, accounting for 98 to 100% of plasma radioactivity from each subject. Faldaprevir was the only drug-related component detected in urine. Faldaprevir was also the major drug-related component in feces, representing 49.8% of the radioactive dose. The majority of the remainder of radioactivity in feces (41% of the dose) was accounted for in almost equal quantities by 2 hydroxylated metabolites. The most common adverse events were nausea, diarrhea, and constipation, all of which were related to study drug. In conclusion, faldaprevir is predominantly excreted in feces with negligible urinary excretion.


Subject(s)
Hepacivirus/drug effects , Oligopeptides/pharmacology , Oligopeptides/pharmacokinetics , Protease Inhibitors/pharmacology , Protease Inhibitors/pharmacokinetics , Thiazoles/pharmacology , Thiazoles/pharmacokinetics , Adolescent , Adult , Aminoisobutyric Acids , Humans , Leucine/analogs & derivatives , Male , Middle Aged , Oligopeptides/adverse effects , Oligopeptides/urine , Proline/analogs & derivatives , Protease Inhibitors/adverse effects , Protease Inhibitors/urine , Quinolines , Thiazoles/adverse effects , Thiazoles/urine , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL