Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
J Cell Sci ; 134(24)2021 12 15.
Article in English | MEDLINE | ID: mdl-34841431

ABSTRACT

The main laminin-binding integrins α3ß1, α6ß1 and α6ß4 are co-expressed in the developing kidney collecting duct system. We previously showed that deleting the integrin α3 or α6 subunit in the ureteric bud, which gives rise to the kidney collecting system, caused either a mild or no branching morphogenesis phenotype, respectively. To determine whether these two integrin subunits cooperate in kidney collecting duct development, we deleted α3 and α6 in the developing ureteric bud. The collecting system of the double knockout phenocopied the α3 integrin conditional knockout. However, with age, the mice developed severe inflammation and fibrosis around the collecting ducts, resulting in kidney failure. Integrin α3α6-null collecting duct epithelial cells showed increased secretion of pro-inflammatory cytokines and displayed mesenchymal characteristics, causing loss of barrier function. These features resulted from increased nuclear factor kappa-B (NF-κB) activity, which regulated the Snail and Slug (also known as Snai1 and Snai2, respectively) transcription factors and their downstream targets. These data suggest that laminin-binding integrins play a key role in the maintenance of kidney tubule epithelial cell polarity and decrease pro-inflammatory cytokine secretion by regulating NF-κB-dependent signaling.


Subject(s)
Integrins , Kidney Tubules, Collecting , Animals , Epithelial Cells , Inflammation/genetics , Integrin alpha3beta1 , Integrins/genetics , Laminin/genetics , Mice , NF-kappa B/genetics
2.
Blood ; 136(2): 210-223, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32219444

ABSTRACT

Resistance to multimodal chemotherapy continues to limit the prognosis of acute lymphoblastic leukemia (ALL). This occurs in part through a process called adhesion-mediated drug resistance, which depends on ALL cell adhesion to the stroma through adhesion molecules, including integrins. Integrin α6 has been implicated in minimal residual disease in ALL and in the migration of ALL cells to the central nervous system. However, it has not been evaluated in the context of chemotherapeutic resistance. Here, we show that the anti-human α6-blocking Ab P5G10 induces apoptosis in primary ALL cells in vitro and sensitizes primary ALL cells to chemotherapy or tyrosine kinase inhibition in vitro and in vivo. We further analyzed the underlying mechanism of α6-associated apoptosis using a conditional knockout model of α6 in murine BCR-ABL1+ B-cell ALL cells and showed that α6-deficient ALL cells underwent apoptosis. In vivo deletion of α6 in combination with tyrosine kinase inhibitor (TKI) treatment was more effective in eradicating ALL than treatment with a TKI (nilotinib) alone. Proteomic analysis revealed that α6 deletion in murine ALL was associated with changes in Src signaling, including the upregulation of phosphorylated Lyn (pTyr507) and Fyn (pTyr530). Thus, our data support α6 as a novel therapeutic target for ALL.


Subject(s)
Drug Resistance, Neoplasm , Gene Deletion , Integrin alpha6 , Neoplasm Proteins , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Pyrimidines/pharmacology , Animals , Antibodies, Neoplasm/pharmacology , Antibodies, Neutralizing/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Female , Humans , Integrin alpha6/genetics , Integrin alpha6/metabolism , Male , Mice , Mice, Knockout , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/therapy
3.
Development ; 147(4)2020 02 17.
Article in English | MEDLINE | ID: mdl-31988184

ABSTRACT

Integrin dimers α3/ß1, α6/ß1 and α6/ß4 are the mammary epithelial cell receptors for laminins, which are major components of the mammary basement membrane. The roles of specific basement membrane components and their integrin receptors in the regulation of functional gland development have not been analyzed in detail. To investigate the functions of laminin-binding integrins, we obtained mutant mice with mammary luminal cell-specific deficiencies of the α3 and α6 integrin chains generated using the Cre-Lox approach. During pregnancy, mutant mice displayed decreased luminal progenitor activity and retarded lobulo-alveolar development. Mammary glands appeared functional at the onset of lactation in mutant mice; however, myoepithelial cell morphology was markedly altered, suggesting cellular compensation mechanisms involving cytoskeleton reorganization. Notably, lactation was not sustained in mutant females, and the glands underwent precocious involution. Inactivation of the p53 gene rescued the growth defects but did not restore lactogenesis in mutant mice. These results suggest that the p53 pathway is involved in the control of mammary cell proliferation and survival downstream of laminin-binding integrins, and underline an essential role of cell interactions with laminin for lactogenic differentiation.


Subject(s)
Integrins/physiology , Lactation , Mammary Glands, Animal/physiology , Animals , Cell Differentiation , Cell Lineage , Cell Proliferation , Cell Survival , Cytoskeleton/physiology , Disease Progression , Female , Gene Deletion , Hormones/physiology , Integrin alpha3/physiology , Integrin alpha6/physiology , Integrin beta1/physiology , Integrin beta4/physiology , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Knockout , Mice, Mutant Strains , Mutation , Neoplastic Stem Cells/cytology , Oligonucleotide Array Sequence Analysis , Ovary/physiology , Phenotype , Pregnancy , Pregnancy, Animal , Prognosis , Protein Binding , Protein Multimerization
5.
Stem Cell Reports ; 12(4): 831-844, 2019 04 09.
Article in English | MEDLINE | ID: mdl-30905738

ABSTRACT

Integrins, which bind laminin, a major component of the mammary basement membrane, are strongly expressed in basal stem cell-enriched populations, but their role in controlling mammary stem cell function remains unclear. We found that stem cell activity, as evaluated in transplantation and mammosphere assays, was reduced in mammary basal cells depleted of laminin receptors containing α3- and α6-integrin subunits. This was accompanied by low MDM2 levels, p53 stabilization, and diminished proliferative capacity. Importantly, disruption of p53 function restored the clonogenicity of α3/α6-integrin-depleted mammary basal stem cells, while inhibition of RHO or myosin II, leading to decreased p53 activity, rescued the mammosphere formation. These data suggest that α3/α6-integrin-mediated adhesion plays an essential role in controlling the proliferative potential of mammary basal stem/progenitor cells through myosin II-mediated regulation of p53 and indicate that laminins might be important components of the mammary stem cell niche.

6.
Matrix Biol ; 77: 101-116, 2019 04.
Article in English | MEDLINE | ID: mdl-30193894

ABSTRACT

Integrins, the major receptors for cell-extracellular matrix (ECM) interactions, regulate multiple cell biological processes including adhesion, migration, proliferation and growth factor-dependent signaling. The principal laminin (LM) binding integrins α3ß1, α6ß1 and α6ß4 are usually co-expressed in cells and bind to multiple laminins with different affinities making it difficult to define their specific function. In this study, we generated kidney epithelial collecting duct (CD) cells that lack both the α3 and α6 integrin subunits. This deletion impaired cell adhesion and migration to LM-332 and LM-511 more than deleting α3 or α6 alone. Cell adhesion mediated by both α3ß1 and α6 integrins was PI3K independent, but required K63-linked polyubiquitination of Akt by the ubiquitin-modifying enzyme TRAF6. Moreover, we provide evidence that glial-derived neurotrophic factor (GDNF) and fibroblast growth factor 10 (FGF10)- mediated cell signaling, spreading and proliferation were severely compromised in double integrin α3/α6- but not single α3- or α6-null CD cells. Interestingly, these growth factor-dependent cell functions required both PI3K- and TRAF6-dependent Akt activation. These data suggest that expression of the integrin α3 or α6 subunit is sufficient to mediate GDNF- and FGF10-dependent spreading, proliferation and signaling on LM-511. Thus, our study shows that α3 and α6 containing integrins promote distinct functions and signaling by CD cells on laminin substrata.


Subject(s)
Cell Adhesion Molecules/metabolism , Epithelial Cells/metabolism , Extracellular Matrix/metabolism , Integrin alpha3/metabolism , Integrin alpha6/metabolism , Laminin/metabolism , Signal Transduction , Animals , Cell Adhesion/drug effects , Cell Adhesion Molecules/chemistry , Cell Movement/drug effects , Cell Proliferation/drug effects , Epithelial Cells/cytology , Epithelial Cells/drug effects , Extracellular Matrix/chemistry , Extracellular Matrix/drug effects , Fibroblast Growth Factor 10/pharmacology , Gene Deletion , Gene Expression Regulation , Glial Cell Line-Derived Neurotrophic Factor/pharmacology , Humans , Integrin alpha3/genetics , Integrin alpha3beta1/genetics , Integrin alpha3beta1/metabolism , Integrin alpha6/genetics , Integrin alpha6beta1/genetics , Integrin alpha6beta1/metabolism , Integrin alpha6beta4/genetics , Integrin alpha6beta4/metabolism , Intracellular Signaling Peptides and Proteins , Kidney Tubules, Collecting/cytology , Kidney Tubules, Collecting/metabolism , Laminin/chemistry , Mice , Mice, Knockout , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Primary Cell Culture , Protein Binding , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , TNF Receptor-Associated Factor 6/genetics , TNF Receptor-Associated Factor 6/metabolism , Kalinin
7.
Mol Biol Cell ; 29(4): 435-451, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29237817

ABSTRACT

Hemidesmosomes (HDs) are epithelial-specific cell-matrix adhesions that stably anchor the intracellular keratin network to the extracellular matrix. Although their main role is to protect the epithelial sheet from external mechanical strain, how HDs respond to mechanical stress remains poorly understood. Here we identify a pathway essential for HD remodeling and outline its role with respect to α6ß4 integrin recycling. We find that α6ß4 integrin chains localize to the plasma membrane, caveolae, and ADP-ribosylation factor-6+ (Arf6+) endocytic compartments. Based on fluorescence recovery after photobleaching and endocytosis assays, integrin recycling between both sites requires the small GTPase Arf6 but neither caveolin1 (Cav1) nor Cavin1. Strikingly, when keratinocytes are stretched or hypo-osmotically shocked, α6ß4 integrin accumulates at cell edges, whereas Cav1 disappears from it. This process, which is isotropic relative to the orientation of stretch, depends on Arf6, Cav1, and Cavin1. We propose that mechanically induced HD growth involves the isotropic flattening of caveolae (known for their mechanical buffering role) associated with integrin diffusion and turnover.


Subject(s)
ADP-Ribosylation Factors/metabolism , Caveolin 1/metabolism , Hemidesmosomes/metabolism , Integrin beta4/metabolism , Keratinocytes/metabolism , ADP-Ribosylation Factor 6 , Cell Line , Cell Membrane/metabolism , Hemidesmosomes/ultrastructure , Humans , Microscopy, Electron, Transmission , Microscopy, Immunoelectron
8.
Gut ; 66(10): 1748-1760, 2017 10.
Article in English | MEDLINE | ID: mdl-27371534

ABSTRACT

OBJECTIVE: Epidemiological and clinical data indicate that patients suffering from IBD with long-standing colitis display a higher risk to develop colorectal high-grade dysplasia. Whereas carcinoma invasion and metastasis rely on basement membrane (BM) disruption, experimental evidence is lacking regarding the potential contribution of epithelial cell/BM anchorage on inflammation onset and subsequent neoplastic transformation of inflammatory lesions. Herein, we analyse the role of the α6ß4 integrin receptor found in hemidesmosomes that attach intestinal epithelial cells (IECs) to the laminin-containing BM. DESIGN: We developed new mouse models inducing IEC-specific ablation of α6 integrin either during development (α6ΔIEC) or in adults (α6ΔIEC-TAM). RESULTS: Strikingly, all α6ΔIEC mutant mice spontaneously developed long-standing colitis, which degenerated overtime into infiltrating adenocarcinoma. The sequence of events leading to disease onset entails hemidesmosome disruption, BM detachment, IL-18 overproduction by IECs, hyperplasia and enhanced intestinal permeability. Likewise, IEC-specific ablation of α6 integrin induced in adult mice (α6ΔIEC-TAM) resulted in fully penetrant colitis and tumour progression. Whereas broad-spectrum antibiotic treatment lowered tissue pathology and IL-1ß secretion from infiltrating myeloid cells, it failed to reduce Th1 and Th17 response. Interestingly, while the initial intestinal inflammation occurred independently of the adaptive immune system, tumourigenesis required B and T lymphocyte activation. CONCLUSIONS: We provide for the first time evidence that loss of IECs/BM interactions triggered by hemidesmosome disruption initiates the development of inflammatory lesions that progress into high-grade dysplasia and carcinoma. Colorectal neoplasia in our mouse models resemble that seen in patients with IBD, making them highly attractive for discovering more efficient therapies.


Subject(s)
Adenocarcinoma/physiopathology , Colitis/physiopathology , Colorectal Neoplasms/physiopathology , Cytokines/metabolism , Hemidesmosomes/physiology , Integrin alpha6/genetics , Integrin alpha6beta4/metabolism , Intestinal Mucosa/metabolism , Adaptive Immunity , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Animals , B-Lymphocytes , Basement Membrane/physiopathology , Caspase 1/metabolism , Colitis/genetics , Colitis/metabolism , Colitis/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Cytokines/genetics , Epithelial Cells/metabolism , Hemidesmosomes/genetics , Homeostasis/genetics , Intestinal Mucosa/pathology , Intestinal Mucosa/physiopathology , Keratin-18/metabolism , Keratin-8/metabolism , Lymphocyte Activation , Mice , Mucus/metabolism , Myeloid Differentiation Factor 88/genetics , Permeability , Severity of Illness Index , Signal Transduction , T-Lymphocytes
9.
Int J Oncol ; 45(5): 2058-64, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25176420

ABSTRACT

The α6 integrin subunit (α6) has been implicated in cancer cell migration and in the progression of several malignancies, but its role in tumor angiogenesis is unclear. In mice, anti-α6 blocking antibodies reduce tumor angiogenesis, whereas Tie1-dependent α6 gene deletion enhances neovessel formation in melanoma and lung carcinoma. To clarify the discrepancy in these results we used the cre-lox system to generate a mouse line, α6fl/fl­Tie2Cre(+), with α6 gene deletion specifically in Tie2-lineage cells: endothelial cells, pericytes, subsets of hematopoietic stem cells, and Tie2-expressing monocytes/macrophages (TEMs), known for their proangiogenic properties. Loss of α6 expression in α6fl/fl­Tie2Cre(+) mice reduced tumor growth in a murine B16F10 melanoma model. Immunohistological analysis of the tumors showed that Tie2-dependent α6 gene deletion was associated with reduced tumor vascularization and with reduced infiltration of proangiogenic Tie2-expressing macrophages. These findings demonstrate that α6 integrin subunit plays a major role in tumor angiogenesis and TEM infiltration. Targeting α6 could be used as a strategy to reduce tumor growth.


Subject(s)
Integrin alpha6/genetics , Melanoma, Experimental/genetics , Neovascularization, Pathologic/genetics , Receptor, TIE-2/genetics , Animals , Cell Lineage , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Humans , Integrin alpha6/biosynthesis , Macrophages/metabolism , Macrophages/pathology , Melanoma, Experimental/pathology , Mice , Mice, Transgenic , Neovascularization, Pathologic/pathology , Receptor, TIE-2/biosynthesis
10.
J Biol Chem ; 289(7): 3842-55, 2014 Feb 14.
Article in English | MEDLINE | ID: mdl-24381169

ABSTRACT

The canonical mitochondrial death pathway was first discovered for its role in signaling apoptosis. It has since been found to have a requisite function in differentiation initiation in many cell types including the lens through low level activation of the caspase-3 protease. The ability of this pathway to function as a molecular switch in lens differentiation depends on the concurrent induction of survival molecules in the Bcl-2 and IAP families, induced downstream of an IGF-1R/NFκB coordinate survival signal, to regulate caspase-3 activity. Here we investigated whether α6 integrin signals upstream to this IGF-1R-mediated survival-linked differentiation signal. Our findings show that IGF-1R is recruited to and activated specifically in α6 integrin receptor signaling complexes in the lens equatorial region, where lens epithelial cells initiate their differentiation program. In studies with both α6 integrin knock-out mice lenses and primary lens cell cultures following α6 integrin siRNA knockdown, we show that IGF-1R activation is dependent on α6 integrin and that this transactivation requires Src kinase activity. In addition, without α6 integrin, activation and expression of NFκB was diminished, and expression of Bcl-2 and IAP family members were down-regulated, resulting in high levels of caspase-3 activation. As a result, a number of hallmarks of lens differentiation failed to be induced; including nuclear translocation of Prox1 in the differentiation initiation zone and apoptosis was promoted. We conclude that α6 integrin is an essential upstream regulator of the IGF-1R survival pathway that regulates the activity level of caspase-3 for it to signal differentiation initiation of lens epithelial cells.


Subject(s)
Caspase 3/metabolism , Cell Differentiation/physiology , Epithelial Cells/metabolism , Eye Proteins/metabolism , Integrin alpha6/metabolism , Lens Capsule, Crystalline/metabolism , Receptor, IGF Type 1/metabolism , Transcriptional Activation/physiology , Animals , Caspase 3/genetics , Cells, Cultured , Chick Embryo , Enzyme Activation/physiology , Epithelial Cells/cytology , Eye Proteins/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Inhibitor of Apoptosis Proteins/genetics , Inhibitor of Apoptosis Proteins/metabolism , Integrin alpha6/genetics , Lens Capsule, Crystalline/cytology , Mice , Mice, Knockout , NF-kappa B/genetics , NF-kappa B/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Receptor, IGF Type 1/genetics , STAT1 Transcription Factor/physiology , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , src-Family Kinases/genetics , src-Family Kinases/metabolism
11.
J Neurosci ; 33(46): 17995-8007, 2013 Nov 13.
Article in English | MEDLINE | ID: mdl-24227711

ABSTRACT

During development, Schwann cells extend lamellipodia-like processes to segregate large- and small-caliber axons during the process of radial sorting. Radial sorting is a prerequisite for myelination and is arrested in human neuropathies because of laminin deficiency. Experiments in mice using targeted mutagenesis have confirmed that laminins 211, 411, and receptors containing the ß1 integrin subunit are required for radial sorting; however, which of the 11 α integrins that can pair with ß1 forms the functional receptor is unknown. Here we conditionally deleted all the α subunits that form predominant laminin-binding ß1 integrins in Schwann cells and show that only α6ß1 and α7ß1 integrins are required and that α7ß1 compensates for the absence of α6ß1 during development. The absence of either α7ß1 or α6ß1 integrin impairs the ability of Schwann cells to spread and to bind laminin 211 or 411, potentially explaining the failure to extend cytoplasmic processes around axons to sort them. However, double α6/α7 integrin mutants show only a subset of the abnormalities found in mutants lacking all ß1 integrins, and a milder phenotype. Double-mutant Schwann cells can properly activate all the major signaling pathways associated with radial sorting and show normal Schwann cell proliferation and survival. Thus, α6ß1 and α7ß1 are the laminin-binding integrins required for axonal sorting, but other Schwann cell ß1 integrins, possibly those that do not bind laminins, may also contribute to radial sorting during peripheral nerve development.


Subject(s)
Axons/physiology , Integrin alpha6beta1/physiology , Integrins/physiology , Schwann Cells/physiology , Animals , Animals, Newborn , Axons/ultrastructure , Cell Proliferation , Cells, Cultured , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Organ Culture Techniques , Schwann Cells/ultrastructure
12.
Proc Natl Acad Sci U S A ; 110(31): E2915-24, 2013 Jul 30.
Article in English | MEDLINE | ID: mdl-23847204

ABSTRACT

We describe a unique extracellular matrix (ECM) niche in the spleen, the marginal zone (MZ), characterized by the basement membrane glycoproteins, laminin α5 and agrin, that promotes formation of a specialized population of MZ B lymphocytes that respond rapidly to blood-borne antigens. Mice with reduced laminin α5 expression show reduced MZ B cells and increased numbers of newly formed (NF) transitional B cells that migrate from the bone marrow, without changes in other immune or stromal cell compartments. Transient integrin α6ß1-mediated interaction of NF B cells with laminin α5 in the MZ supports the MZ B-cell population, their long-term survival, and antibody response. Data suggest that the unique 3D structure and biochemical composition of the ECM of lymphoid organs impacts on immune cell fate.


Subject(s)
B-Lymphocytes/immunology , Bone Marrow/immunology , Cell Movement/immunology , Extracellular Matrix/immunology , Spleen/immunology , Agrin/genetics , Agrin/immunology , Animals , B-Lymphocytes/cytology , Cell Movement/genetics , Cell Survival/genetics , Cell Survival/immunology , Extracellular Matrix/genetics , Integrin alpha6beta1/genetics , Integrin alpha6beta1/immunology , Laminin/genetics , Laminin/immunology , Mice , Mice, Knockout , Spleen/cytology
13.
Circulation ; 128(5): 541-52, 2013 Jul 30.
Article in English | MEDLINE | ID: mdl-23797810

ABSTRACT

BACKGROUND: Laminins are major components of basement membranes, well located to interact with platelets upon vascular injury. Laminin-111 (α1ß1γ1) is known to support platelet adhesion but is absent from most blood vessels, which contain isoforms with the α2, α4, or α5 chain. Whether vascular laminins support platelet adhesion and activation and the significance of these interactions in hemostasis and thrombosis remain unknown. METHODS AND RESULTS: Using an in vitro flow assay, we show that laminin-411 (α4ß1γ1), laminin-511 (α5ß1γ1), and laminin-521 (α5ß2γ1), but not laminin-211 (α2ß1γ1), allow efficient platelet adhesion and activation across a wide range of arterial wall shear rates. Adhesion was critically dependent on integrin α6ß1 and the glycoprotein Ib-IX complex, which binds to plasmatic von Willebrand factor adsorbed on laminins. Glycoprotein VI did not participate in the adhesive process but mediated platelet activation induced by α5-containing laminins. To address the significance of platelet/laminin interactions in vivo, we developed a platelet-specific knockout of integrin α6. Platelets from these mice failed to adhere to laminin-411, laminin-511, and laminin-521 but responded normally to a series of agonists. α6ß1-Deficient mice presented a marked decrease in arterial thrombosis in 3 models of injury of the carotid, aorta, and mesenteric arterioles. The tail bleeding time and blood loss remained unaltered, indicating normal hemostasis. CONCLUSIONS: This study reveals an unsuspected important contribution of laminins to thrombus formation in vivo and suggests that targeting their main receptor, integrin α6ß1, could represent an alternative antithrombotic strategy with a potentially low bleeding risk.


Subject(s)
Cell Adhesion/physiology , Integrin alpha6beta1/metabolism , Platelet Activation/physiology , Platelet Adhesiveness/physiology , Thrombosis/metabolism , Animals , Aorta/metabolism , Aorta/pathology , Carotid Arteries/metabolism , Carotid Arteries/pathology , Humans , Integrin alpha6beta1/physiology , Laminin/physiology , Mesenteric Arteries/metabolism , Mesenteric Arteries/pathology , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Risk Factors , Thrombosis/pathology
14.
Cell Adh Migr ; 7(3): 325-32, 2013.
Article in English | MEDLINE | ID: mdl-23722246

ABSTRACT

Mutations in genes encoding several basal lamina components as well as their cellular receptors disrupt normal deposition and remodeling of the cortical basement membrane resulting in a disorganized cerebral and cerebellar cortex. The α6 integrin was the first α subunit associated with cortical lamination defects and formation of neural ectopias. In order to understand the precise role of α6 integrin in the central nervous system (CNS), we have generated mutant mice carrying specific deletion of α6 integrin in neuronal and glia precursors by crossing α6 conditional knockout mice with Nestin-Cre line. Cerebral cortex development occurred properly in the resulting α6 (fl/fl;nestin-Cre) mutant animals. Interestingly, however, cerebellum displayed foliation pattern defects although granule cell (GC) proliferation and migration were not affected. Intriguingly, analysis of Bergmann glial (BG) scaffold revealed abnormalities in fibers morphology associated with reduced processes outgrowth and altered actin cytoskeleton. Overall, these data show that α6 integrin receptors are required in BG cells to provide a proper fissure formation during cerebellum morphogenesis.


Subject(s)
Cerebellum/embryology , Cerebellum/growth & development , Integrin alpha6/metabolism , Actin Cytoskeleton , Animals , Cell Line , Cell Movement , Cell Proliferation , Cerebellum/cytology , Gene Expression Regulation, Developmental , Integrin alpha6/genetics , Mice , Mice, Knockout , Morphogenesis , Neuroglia/metabolism , RNA, Messenger/analysis
15.
Cell Adh Migr ; 6(6): 471-5, 2012.
Article in English | MEDLINE | ID: mdl-23076134

ABSTRACT

Adhesion between cells and the extracellular matrix is mediated by different types of transmembraneous proteins. Their associations to specific partners lead to the assembly of contacts such as focal adhesions and hemidesmosomes. The spatial overlap between both contacts within cells has however limited the study of each type of contact. Here we show that with "stampcils" focal contacts and hemidesmosomes can be spatially separated: cells are plated within the cavities of a stencil and the grids of the stencil serve as stamps for grafting an extracellular matrix protein-fibronectin. Cells engage new contacts on stamped zones leading to the segregation of adhesions and their associated cytoskeletons, i.e., actin and intermediate filaments of keratins. This new method should provide new insights into cell contacts compositions and dynamics.


Subject(s)
Cell Culture Techniques , Cytoskeleton/metabolism , Focal Adhesions/metabolism , Actins/metabolism , Cell Adhesion , Cell Adhesion Molecules/metabolism , Cell Line, Tumor , Cell Movement , Fibronectins/metabolism , Fluorescent Antibody Technique/methods , Hemidesmosomes/metabolism , Humans , Keratinocytes/metabolism , Multiprotein Complexes/metabolism , Staining and Labeling/methods , Time Factors
16.
Cardiovasc Res ; 95(1): 39-47, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22517984

ABSTRACT

AIMS: Integrins α6ß1 and α6ß4 are receptors for laminins, the main components of the basement membrane underlying the endothelial cells. In vitro, α6 integrin subunit (α6) expression at the surface of endothelial cells and their progenitors (EPCs) is up-regulated by pro-angiogenic growth factors and is crucial for adhesion, migration, and pseudotube formation. We investigated the role for α6 in post-ischaemic vascular repair in vivo. METHODS AND RESULTS: We used the cre-lox system to generate a mouse line with specific α6 gene deletion in Tie2-lineage cells. In a model of hind-limb ischaemia, Tie2-dependent α6 deletion reduced neovessel formation and reperfusion of the ischaemic limb. Concerning the role for α6 in post-ischaemic vasculogenesis, we showed previously that α6 was required for EPC recruitment at the site of ischaemia. Here, we found that α6 deletion also reduced EPC mobilization from the bone marrow after ischaemia. Examination of the ischaemic muscles showed that Tie2-dependent α6 deletion decreased the recruitment of pro-angiogenic Tie2-expressing macrophages. In the Matrigel plug assay, fibroblast growth factor-2-induced vascularization was diminished in mice lacking endothelial α6. To specifically investigate the role for α6 in angiogenesis, aortic rings were embedded in Matrigel or collagen and cultured ex vivo. In Matrigel, neovessel outgrowth from rings lacking α6 was strongly diminished, whereas no genotype-dependent difference occurred for rings in collagen. CONCLUSION: α6 plays a major role in both post-ischaemic angiogenesis and vasculogenesis.


Subject(s)
Integrin alpha6/physiology , Ischemia/physiopathology , Neovascularization, Physiologic , Receptor Protein-Tyrosine Kinases/physiology , Animals , Cell Lineage , Cell Movement , Fibroblast Growth Factor 2/pharmacology , Male , Mice , Mice, Knockout , Protein Subunits/physiology , Receptor, TIE-2
17.
Development ; 138(20): 4475-85, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21937599

ABSTRACT

Neurons require precise targeting of their axons to form a connected network and a functional nervous system. Although many guidance receptors have been identified, much less is known about how these receptors signal to direct growth cone migration. We used Caenorhabditis elegans motoneurons to study growth cone directional migration in response to a repellent UNC-6 (netrin homolog) guidance cue. The evolutionarily conserved kinase MIG-15 [homolog of Nck-interacting kinase (NIK)] regulates motoneuron UNC-6-dependent repulsion through unknown mechanisms. Using genetics and live imaging techniques, we show that motoneuron commissural axon morphology defects in mig-15 mutants result from impaired growth cone motility and subsequent failure to migrate across longitudinal obstacles or retract extra processes. To identify new genes acting with mig-15, we screened for genetic enhancers of the mig-15 commissural phenotype and identified the ezrin/radixin/moesin ortholog ERM-1, the kinesin-1 motor UNC-116 and the actin regulator WVE-1 complex. Genetic analysis indicates that mig-15 and erm-1 act in the same genetic pathway to regulate growth cone migration and that this pathway functions in parallel to the UNC-116/WVE-1 pathway. Further, time-lapse imaging of growth cones in mutants suggests that UNC-116 might be required to stimulate protrusive activity at the leading edge, whereas MIG-15 and ERM-1 maintain low activity at the rear edge. Together, these results support a model in which the MIG-15 kinase and the UNC-116-WVE-1 complex act on opposite sides of the growth cone to promote robust directional migration.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Cell Cycle Proteins/metabolism , Cytoskeletal Proteins/metabolism , Growth Cones/metabolism , Kinesins/metabolism , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Cell Cycle Proteins/genetics , Cell Movement/physiology , Cell Polarity , Cytoskeletal Proteins/genetics , Genes, Helminth , Kinesins/genetics , Motor Neurons/metabolism , Mutation , Neurogenesis/genetics , Neurogenesis/physiology , RNA Interference
18.
Eur J Cell Biol ; 90(2-3): 270-7, 2011.
Article in English | MEDLINE | ID: mdl-20965608

ABSTRACT

Hemidesmosomes (HDs) are essential anchorage junctions which mediate the firm attachment of epithelia to the underlying basement membranes, of which one main component is the integrin α6ß4. These specific junctions are also able to trigger signalling pathways, via the recruitment and interactions of signalling molecules with HD components such as the cytoplasmic tail of the ß4 integrin or the plakin plectin. HDs must also assemble and disassemble depending on the tissue context for example during tissue remodelling. Alterations of HD components or their loss result in skin blistering disorders known as epidermolysis bullosa. Since mice lacking integrin α6 die at birth with severe skin blistering, we have produced a mouse line in which epidermal deletion of integrin α6 can be controlled by tamoxifen injection. We observed that the deletion was mosaic, but that hairless skin such as ears, tails and paws were affected and showed chronic inflammation associated with hyperproliferation, and expression of laminin-111. Interestingly, two cytokines, amphiregulin and epiregulin, previously found increased in integrin α6 deficient cultured keratinocytes, were also increased here in the affected skin. In detached areas, we validate clearly that the absence of integrin α6 leads to a delocalisation of plectin, and the complete disappearance of HD structures.


Subject(s)
Integrin alpha6/metabolism , Keratinocytes/cytology , Keratinocytes/metabolism , Skin/metabolism , Animals , Cell Adhesion/physiology , Cell Differentiation/physiology , Cell Growth Processes/physiology , Cell Survival/physiology , Epidermis/metabolism , Epidermis/pathology , Humans , Inflammation/metabolism , Inflammation/pathology , Keratinocytes/pathology , Mice , Mice, Transgenic , Skin/pathology
19.
Eur J Neurosci ; 31(3): 399-409, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20105241

ABSTRACT

During cerebral cortex development, post-mitotic neurons interact with radial glial fibers and the extracellular environment to migrate away from the ventricular region and form a correct laminar structure. Integrin receptors are major mediators of cell-cell and cell-extracellular matrix interactions. Several integrin heterodimers are present during formation of the cortical layers. The alpha5beta1 receptor is expressed in the neural progenitors of the ventricular zone during cerebral cortex formation. Using in utero electroporation to introduce short hairpin RNAs in the brain at embryonic day 15.5, we were able to inhibit acutely the expression of alpha5 integrin in the developing cortex. The knockdown of alpha5 integrin expression level in neural precursors resulted in an inhibition of radial migration, without perturbing the glial scaffold. Moreover, the same inhibitory effect on neuronal migration was observed after electroporation of a Cre recombinase expression plasmid into the neural progenitors of conditional knockout mice for alpha5 integrin. In both types of experiments, the electroporated cells expressing reduced levels of alpha5 integrin accumulated in the premigratory region with an abnormal morphology. At postnatal day 2, ectopic neurons were observed in cortical layer V, while a deficit of neurons was observed in cortical layer II-IV. We show that these neurons do not express a layer V-specific marker, suggesting that they have not undergone premature differentiation. Overall, these results indicate that alpha5beta1 integrin functions in the regulation of neural morphology and migration during cortical development, playing a role in cortical lamination.


Subject(s)
Cell Movement/physiology , Cerebral Cortex , Integrin alpha5beta1/metabolism , Neurons/physiology , Animals , Cell Differentiation/physiology , Cells, Cultured , Cerebral Cortex/cytology , Cerebral Cortex/embryology , Cerebral Cortex/growth & development , Electroporation/methods , HeLa Cells , Humans , Integrin alpha5beta1/genetics , Mice , Mice, Knockout , Neurons/cytology , RNA Interference , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
20.
J Pathol ; 220(3): 370-81, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19967723

ABSTRACT

Laminins are expressed highly in blood vessel basement membranes and have been implicated in angiogenesis. alpha6beta1- and alpha6beta4-integrins are major receptors for laminins in endothelial cells, but the precise role of endothelial alpha6-integrin in tumour angiogenesis is not clear. We show that blood vessels in human invasive ductal carcinoma of the breast have decreased expression of the alpha6-integrin-subunit when compared with normal breast tissue. These data suggest that a decrease in alpha6-integrin-subunit expression in endothelial cells is associated with tumour angiogenesis. To test whether the loss of the endothelial alpha6-integrin subunit affects tumour growth and angiogenesis, we generated alpha6fl/fl-Tie1Cre+ mice and showed that endothelial deletion of alpha6-integrin is sufficient to enhance tumour size and tumour angiogenesis in both murine B16F0 melanoma and Lewis cell lung carcinoma. Mechanistically, endothelial alpha6-integrin deficiency elevated significantly VEGF-mediated angiogenesis both in vivo and ex vivo. In particular, alpha6-integrin-deficient endothelial cells displayed increased levels of VEGF-receptor 2 (VEGFR2) and VEGF-mediated downstream ERK1/2 activation. By developing the first endothelial-specific alpha6-knockout mice, we show that the expression of the alpha6-integrin subunit in endothelial cells acts as a negative regulator of angiogenesis both in vivo and ex vivo.


Subject(s)
Breast Neoplasms/blood supply , Integrin alpha6/genetics , Neoplasm Proteins/genetics , Neoplasms, Experimental/blood supply , Neovascularization, Pathologic/genetics , Animals , Breast Neoplasms/metabolism , Carcinoma, Ductal, Breast/blood supply , Carcinoma, Lewis Lung/blood supply , Carcinoma, Lewis Lung/metabolism , Carcinoma, Lewis Lung/pathology , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Genotype , Humans , Integrin alpha6/metabolism , Integrin alpha6/physiology , Melanoma/blood supply , Melanoma/metabolism , Melanoma/pathology , Mice , Mice, Knockout , Neoplasm Proteins/metabolism , Neoplasm Proteins/physiology , Neoplasm Transplantation , Neoplasms, Experimental/metabolism , Neovascularization, Pathologic/chemically induced , Neovascularization, Pathologic/metabolism , Polymerase Chain Reaction/methods , Vascular Endothelial Growth Factor A/toxicity , Vascular Endothelial Growth Factor Receptor-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL