Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Metrologia ; 56(6)2019.
Article in English | MEDLINE | ID: mdl-32165769

ABSTRACT

Accurate determination of the bidirectional transmittance distribution function (BTDF) of transmissive diffusers is critical for the on-orbit spectral radiance calibration of several satellite-based, Earth remote sensing instruments. This study presents the results of the comparison of BTDF measurements by NASA Goddard Space Flight Center's Diffuser Calibration Laboratory and the National Institute of Standards and Technology's Spectral Tri-function Automated Reference Reflectometer facility on two transmissive diffusers: HOD-500, a synthetic fused silica sample manufactured by Hereaus Quarzglas and Spectralon-250, a sintered polytetrafluoroethylene sample manufactured by Labsphere, Incorporated. BTDF measurements were acquired at seven wavelengths from 290 nm to 740 nm, at incident elevation angles of 0° and 30°, and at scatter elevation angles from 1° to 15°. Comparison of the measurements made by the two facilities revealed excellent agreement within their combined standard uncertainties. NASA chose the parameters for the BTDF measurements to be identical to those NASA used when measuring the BTDF of the flight diffusers to be flown onboard the Tropospheric Monitoring of Pollution (TEMPO) and the Geostationary Environment Monitoring Spectrometer (GEMS) satellite instruments. Successful agreement between NASA and NIST of BTDF results, therefore, effectively validates the BTDF measurements NASA made for these satellite flight programs.

2.
Article in English | MEDLINE | ID: mdl-29167593

ABSTRACT

Satellite instruments operating in the reflective solar wavelength region require accurate and precise determination of the Bidirectional Reflectance Distribution Functions (BRDFs) of the laboratory and flight diffusers used in their pre-flight and on-orbit calibrations. This paper advances that initial work and presents a comparison of spectral Bidirectional Reflectance Distribution Function (BRDF) and Directional Hemispherical Reflectance (DHR) of Spectralon, a common material for laboratory and on-orbit flight diffusers. A new measurement setup for BRDF measurements from 900 nm to 2500 nm located at NASA Goddard Space Flight Center (GSFC) is described. The GSFC setup employs an extended indium gallium arsenide detector, bandpass filters, and a supercontinuum light source. Comparisons of the GSFC BRDF measurements in the shortwave infrared (SWIR) with those made by the National Institute of Standards and Technology (NIST) Spectral Tri-function Automated Reference Reflectometer (STARR) are presented. The Spectralon sample used in this study was 2 inch diameter, 99% white pressed and sintered Polytetrafluoroethylene (PTFE) target. The NASA/NIST BRDF comparison measurements were made at an incident angle of 0° and viewing angle of 45°. Additional BRDF data not compared to NIST were measured at additional incident and viewing angle geometries and are not presented here. The total combined uncertainty for the measurement of BRDF in the SWIR range made by the GSFC scatterometer is less than 1% (k = 1). This study is in support of the calibration of the Radiation Budget Instrument (RBI) and Visible Infrared Imaging Radiometer Suit (VIIRS) instruments of the Joint Polar Satellite System (JPSS) and other current and future NASA remote sensing missions operating across the reflected solar wavelength region.

3.
Article in English | MEDLINE | ID: mdl-28003712

ABSTRACT

Satellite instruments operating in the reflected solar wavelength region require accurate and precise determination of the optical properties of their diffusers used in pre-flight and post-flight calibrations. The majority of recent and current space instruments use reflective diffusers. As a result, numerous Bidirectional Reflectance Distribution Function (BRDF) calibration comparisons have been conducted between the National Institute of Standards and Technology (NIST) and other industry and university-based metrology laboratories. However, based on literature searches and communications with NIST and other laboratories, no Bidirectional Transmittance Distribution Function (BTDF) measurement comparisons have been conducted between National Measurement Laboratories (NMLs) and other metrology laboratories. On the other hand, there is a growing interest in the use of transmissive diffusers in the calibration of satellite, air-borne, and ground-based remote sensing instruments. Current remote sensing instruments employing transmissive diffusers include the Ozone Mapping and Profiler Suite instrument (OMPS) Limb instrument on the Suomi-National Polar-orbiting Partnership (S-NPP) platform,, the Geostationary Ocean Color Imager (GOCI) on the Korea Aerospace Research Institute's (KARI) Communication, Ocean, and Meteorological Satellite (COMS), the Ozone Monitoring Instrument (OMI) on NASA's Earth Observing System (EOS) Aura platform, the Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument and the Geostationary Environmental Monitoring Spectrometer (GEMS).. This ensemble of instruments requires validated BTDF measurements of their on-board transmissive diffusers from the ultraviolet through the near infrared. This paper presents the preliminary results of a BTDF comparison between the NASA Diffuser Calibration Laboratory (DCL) and NIST on quartz and thin Spectralon samples.

4.
Proc SPIE Int Soc Opt Eng ; 99612016 Sep 01.
Article in English | MEDLINE | ID: mdl-35527792

ABSTRACT

Fused silica diffusers, made by forming scattering centers inside fused silica glass, can exhibit desirable optical properties, such as reflectance or transmittance independent of viewing angle, spectrally flat response into the ultraviolet wavelength range, and good spatial uniformity. The diffusers are of interest for terrestrial and space borne remote sensing instruments, which use light diffusers in reflective and transmissive applications. In this work, we report exploratory measurements of two samples of fused silica diffusers. We will present goniometric bidirectional scattering distribution function (BSDF) measurements under normal illumination provided by the National Institute of Standards and Technology (NIST)'s Goniometric Optical Scatter Instrument (GOSI), by NIST's Infrared reference integrating sphere (IRIS) and by the National Aeronautics and Space Administration (NASA)'s Diffuser Calibration Laboratory. We also present hemispherical diffuse transmittance and reflectance measurements provided by NIST's Double integrating sphere Optical Scattering Instrument (DOSI). The data from the DOSI is analyzed by Prahl's inverse adding-doubling algorithm to obtain the absorption and reduced scattering coefficient of the samples. Implications of fused silica diffusers for remote sensing applications are discussed.

5.
Appl Opt ; 47(18): 3313-23, 2008 Jun 20.
Article in English | MEDLINE | ID: mdl-18566627

ABSTRACT

Laboratory-based bidirectional reflectance distribution functions (BRDFs) of radiometric tarp samples used in the vicarious calibration of Earth remote sensing satellite instruments are presented in this paper. The results illustrate the BRDF dependence on the orientation of the tarps' weft and warp threads. The study was performed using the GSFC scatterometer at incident zenith angles of 0 degrees, 10 degrees, and 30 degrees; scatter zenith angles from 0 degrees to 60 degrees; and scatter azimuth angles of 0 degrees, 45 degrees, 90 degrees, 135 degrees, and 180 degrees. The wavelengths were 485 nm, 550 nm, 633 nm, and 800 nm. The tarp's weft and warp dependence on BRDF is well defined at all measurement geometries and wavelengths. The BRDF difference can be as high as 8% at 0 degrees incident angle and 12% at 30 degrees incident angle. The fitted BRDF data show a very small discrepancy from the measured ones. New data on the forward and backscatter properties of radiometric tarps are reported. The backward scatter is well pronounced for the white samples. The black sample has well-pronounced forward scatter. The provided BRDF characterization of radiometric tarps is an excellent reference for anyone interested in using tarps for radiometric calibrations. The results are NIST traceable.

6.
Appl Opt ; 46(32): 7892-9, 2007 Nov 10.
Article in English | MEDLINE | ID: mdl-17994141

ABSTRACT

Long-term calibration monitoring of the bidirectional reflectance distribution function (BRDF) of Spectralon diffusers in the air-ultraviolet is presented. Four Spectralon diffusers were monitored in this study. Three of the diffusers, designated as H1, H2, and H3, were used in the prelaunch radiance calibration of the Solar Backscatter Ultraviolet/2 (SBUV/2) satellite instruments on National Oceanic and Atmospheric Administration (NOAA) 14 and 16. A fourth diffuser, designated as the 400 diffuser, was used in the prelaunch calibration of the Ozone Mapping and Profiler Suite (OMPS) instrument scheduled for initial flight in 2009 on the National Polar Orbiting Environmental Satellite System Preparatory Project. The BRDF data of this study were obtained between 1994 and 2005 using the scatterometer located in the National Aeronautics and Space Administration Goddard Space Flight Center Diffuser Calibration Laboratory. The diffusers were measured at 13 wavelengths between 230 and 425 nm at the incident and scatter angles used in the prelaunch calibrations of SBUV/2 and OMPS. Spectral features in the BRDF of Spectralon are also discussed. The comparison shows how the air-ultraviolet BRDF of these Spectralon samples changed over time under clean room deployment conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...