Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Front Immunol ; 14: 1147573, 2023.
Article in English | MEDLINE | ID: mdl-37809097

ABSTRACT

Introduction: Autoimmune disorders (ADs) are a group of about 80 disorders that occur when self-attacking autoantibodies are produced due to failure in the self-tolerance mechanisms. ADs are polygenic disorders and associations with genes both in the human leukocyte antigen (HLA) region and outside of it have been described. Previous studies have shown that they are highly comorbid with shared genetic risk factors, while epidemiological studies revealed associations between various lifestyle and health-related phenotypes and ADs. Methods: Here, for the first time, we performed a comparative polygenic risk score (PRS) - Phenome Wide Association Study (PheWAS) for 11 different ADs (Juvenile Idiopathic Arthritis, Primary Sclerosing Cholangitis, Celiac Disease, Multiple Sclerosis, Rheumatoid Arthritis, Psoriasis, Myasthenia Gravis, Type 1 Diabetes, Systemic Lupus Erythematosus, Vitiligo Late Onset, Vitiligo Early Onset) and 3,254 phenotypes available in the UK Biobank that include a wide range of socio-demographic, lifestyle and health-related outcomes. Additionally, we investigated the genetic relationships of the studied ADs, calculating their genetic correlation and conducting cross-disorder GWAS meta-analyses for the observed AD clusters. Results: In total, we identified 508 phenotypes significantly associated with at least one AD PRS. 272 phenotypes were significantly associated after excluding variants in the HLA region from the PRS estimation. Through genetic correlation and genetic factor analyses, we identified four genetic factors that run across studied ADs. Cross-trait meta-analyses within each factor revealed pleiotropic genome-wide significant loci. Discussion: Overall, our study confirms the association of different factors with genetic susceptibility for ADs and reveals novel observations that need to be further explored.


Subject(s)
Autoimmune Diseases , Diabetes Mellitus, Type 1 , Vitiligo , Humans , Autoimmune Diseases/genetics , Diabetes Mellitus, Type 1/genetics , HLA Antigens , Phenotype , Polymorphism, Single Nucleotide
2.
Transl Psychiatry ; 13(1): 69, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36823209

ABSTRACT

Tourette Syndrome (TS) is a complex neurodevelopmental disorder characterized by vocal and motor tics lasting more than a year. It is highly polygenic in nature with both rare and common previously associated variants. Epidemiological studies have shown TS to be correlated with other phenotypes, but large-scale phenome wide analyses in biobank level data have not been performed to date. In this study, we used the summary statistics from the latest meta-analysis of TS to calculate the polygenic risk score (PRS) of individuals in the UK Biobank data and applied a Phenome Wide Association Study (PheWAS) approach to determine the association of disease risk with a wide range of phenotypes. A total of 57 traits were found to be significantly associated with TS polygenic risk, including multiple psychosocial factors and mental health conditions such as anxiety disorder and depression. Additional associations were observed with complex non-psychiatric disorders such as Type 2 diabetes, heart palpitations, and respiratory conditions. Cross-disorder comparisons of phenotypic associations with genetic risk for other childhood-onset disorders (e.g.: attention deficit hyperactivity disorder [ADHD], autism spectrum disorder [ASD], and obsessive-compulsive disorder [OCD]) indicated an overlap in associations between TS and these disorders. ADHD and ASD had a similar direction of effect with TS while OCD had an opposite direction of effect for all traits except mental health factors. Sex-specific PheWAS analysis identified differences in the associations with TS genetic risk between males and females. Type 2 diabetes and heart palpitations were significantly associated with TS risk in males but not in females, whereas diseases of the respiratory system were associated with TS risk in females but not in males. This analysis provides further evidence of shared genetic and phenotypic architecture of different complex disorders.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Diabetes Mellitus, Type 2 , Tourette Syndrome , Male , Female , Humans , Tourette Syndrome/genetics , Autism Spectrum Disorder/genetics , Attention Deficit Disorder with Hyperactivity/genetics , Risk Factors
3.
J Med Genet ; 59(8): 801-809, 2022 08.
Article in English | MEDLINE | ID: mdl-34400559

ABSTRACT

BACKGROUND: Myasthenia gravis (MG) is a rare autoimmune disorder affecting the neuromuscular junction (NMJ). Here, we investigate the genetic architecture of MG via a genome-wide association study (GWAS) of the largest MG data set analysed to date. METHODS: We performed GWAS meta-analysis integrating three different data sets (total of 1401 cases and 3508 controls). We carried out human leucocyte antigen (HLA) fine-mapping, gene-based and tissue enrichment analyses and investigated genetic correlation with 13 other autoimmune disorders as well as pleiotropy across MG and correlated disorders. RESULTS: We confirmed the previously reported MG association with TNFRSF11A (rs4369774; p=1.09×10-13, OR=1.4). Furthermore, gene-based analysis revealed AGRN as a novel MG susceptibility gene. HLA fine-mapping pointed to two independent MG loci: HLA-DRB1 and HLA-B. MG onset-specific analysis reveals differences in the genetic architecture of early-onset MG (EOMG) versus late-onset MG (LOMG). Furthermore, we find MG to be genetically correlated with type 1 diabetes (T1D), rheumatoid arthritis (RA), late-onset vitiligo and autoimmune thyroid disease (ATD). Cross-disorder meta-analysis reveals multiple risk loci that appear pleiotropic across MG and correlated disorders. DISCUSSION: Our gene-based analysis identifies AGRN as a novel MG susceptibility gene, implicating for the first time a locus encoding a protein (agrin) that is directly relevant to NMJ activation. Mutations in AGRN have been found to underlie congenital myasthenic syndrome. Our results are also consistent with previous studies highlighting the role of HLA and TNFRSF11A in MG aetiology and the different risk genes in EOMG versus LOMG. Finally, we uncover the genetic correlation of MG with T1D, RA, ATD and late-onset vitiligo, pointing to shared underlying genetic mechanisms.


Subject(s)
Arthritis, Rheumatoid , Diabetes Mellitus, Type 1 , Myasthenia Gravis , Vitiligo , Age of Onset , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Myasthenia Gravis/genetics
4.
Maturitas ; 152: 20-25, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34674804

ABSTRACT

OBJECTIVES: Recent evidence has linked circadian rhythm dysregulation to an increased risk of metabolic disorders. This study explores a potential association between variation in genes regulating the endogenous circadian timing system (clock genes) and the risk of type 2 diabetes (T2D) in a sample of Greek elderly people. STUDY DESIGN: Variants within and upstream or downstream of PPARA, PPARD, CLOCK/TMEM165, PER1, PER2 and PER3 genes were genotyped in 716 individuals with T2D (A) and 569 normoglycemic controls (B), and allele frequencies were compared between the groups in a case control study design. MAIN OUTCOME MEASURES: Samples were genotyped on Illumina Human PsychArray. Permutation test analysis was implemented to determine statistical significance. To avoid the possibility of subjects with prediabetes being included in the control group, people with HbA1c <5.7% and fasting glucose <100 mg/dl comprised group C (n = 393), for whom a separate analysis was performed (secondary analysis). RESULTS: A protective role against T2D was identified for 14 variants in the PPARA gene. The rs7291444, rs36125344, rs6008384 in PKDREJ, located upstream of PPARA, and rs2859389 in UTS2, located upstream of PER3, demonstrated a protective role against T2D in both analyses. In contrast, rs6744132, located between HES6 and PER2, was positively correlated with T2D risk. Only in the secondary analysis, rs2278637 in VAMP2, located downstream of PER1, and rs11943456 in CLOCK/TMEM165 were found to confer protection against T2D. In a recessive model analysis of all groups, PPARD variants exhibited a protective role against disease. CONCLUSIONS: Our findings suggest a possible implication of clock genes in T2D susceptibility. Further studies are needed to clarify the mechanisms that connect circadian rhythm dysfunction and T2D pathogenesis.


Subject(s)
CLOCK Proteins/genetics , Cation Transport Proteins , Circadian Clocks , Diabetes Mellitus, Type 2/genetics , Aged , Antiporters , Case-Control Studies , Circadian Rhythm/genetics , Diabetes Mellitus, Type 2/epidemiology , Female , Greece/epidemiology , Humans , Male , Polymorphism, Single Nucleotide
5.
Oxid Med Cell Longev ; 2021: 2531062, 2021.
Article in English | MEDLINE | ID: mdl-34545296

ABSTRACT

Diabetic type 2 patients compared to nondiabetic patients exhibit an increased risk of developing diabetic kidney disease (DKD), the leading cause of end-stage renal disease. Hyperglycemia, hypertension, oxidative stress (OS), and genetic background are some of the mechanisms and pathways implicated in DKD pathogenesis. However, data on OS pathway susceptibility genes show limited success and conflicting or inconclusive results. Our study is aimed at exploring OS pathway genes and variants which could be associated with DKD. We recruited 121 diabetes mellitus type 2 (DM2) patients with DKD (cases) and 220 DM2, non-DKD patients (control) of Greek origin and performed a case-control association study using genome-wide association data. PLINK and EIGENSOFT were used to analyze the data. Our results indicate 43 single nucleotide polymorphisms with their 21 corresponding genes on the OS pathway possibly contributing or protecting from DKD: SPP1, TPO, TTN, SGO2, NOS3, PDLIM1, CLU, CCS, GPX4, TXNRD2, EPHX2, MTL5, EPX, GPX3, ALOX12, IPCEF1, GSTA, OXR1, GPX6, AOX1, and PRNP. Therefore, a genetic OS background might underlie the complex pathogenesis of DKD in DM2 patients.


Subject(s)
Diabetes Mellitus, Type 2/pathology , Diabetic Nephropathies/pathology , Oxidative Stress/genetics , Adult , Autoantigens/genetics , Case-Control Studies , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/genetics , Diabetic Nephropathies/etiology , Diabetic Nephropathies/genetics , Female , Genome-Wide Association Study , Humans , Iodide Peroxidase/genetics , Iron-Binding Proteins/genetics , Male , Middle Aged , Osteopontin/genetics , Polymorphism, Single Nucleotide
6.
Brain Sci ; 11(5)2021 May 08.
Article in English | MEDLINE | ID: mdl-34066805

ABSTRACT

The manifestation of Specific Learning Disorder (SLD) during adulthood is one of the least examined research areas among the relevant literature. Therefore, the adult population with SLD is considered a "rare" and "unique" population of major scientific interest. The aim of the current study was to investigate, describe, and analyze the clinical, academic, and socio-demographic characteristics, and other everyday functioning life-skills of adults with SLD, in an attempt to shed more light on this limited field of research. The overall sample consisted of 318 adults, who were assessed for possible SLD. The diagnostic procedure included self-report records (clinical interview), psychometric/cognitive, and learning assessments. The main finding of the study was that SLD, even during adulthood, continues to affect the individuals' well-being and functionality in all of their life domains. There is an ongoing struggle of this population to obtain academic qualifications in order to gain vocational rehabilitation, as well as a difficulty to create a family, possibly resulting from their unstable occupational status, their financial insecurity, and the emotional/self-esteem issues they usually encounter, due to their ongoing learning problems. Moreover, the various interpersonal characteristics, the comorbidity issues, and the different developmental backgrounds observed in the clinical, academic, personal, social, and occupational profiles of the participants, highlight the enormous heterogeneity and the continuum that characterizes SLD during adulthood. We conclude that there is an imperative need for further research and the construction of more sufficient tools for the assessment and diagnosis of SLD during adulthood, which will take into account the developmental challenges and milestones in a series of domains, in order to assist this "vulnerable" population with their life struggles.

7.
Brain Sci ; 11(5)2021 May 14.
Article in English | MEDLINE | ID: mdl-34068951

ABSTRACT

Specific Learning Disorder (SLD) is a multifactorial, neurodevelopmental disorder which may involve persistent difficulties in reading (dyslexia), written expression and/or mathematics. Dyslexia is characterized by difficulties with speed and accuracy of word reading, deficient decoding abilities, and poor spelling. Several studies from different, but complementary, scientific disciplines have investigated possible causal/risk factors for SLD. Biological, neurological, hereditary, cognitive, linguistic-phonological, developmental and environmental factors have been incriminated. Despite worldwide agreement that SLD is highly heritable, its exact biological basis remains elusive. We herein present: (a) an update of studies that have shaped our current knowledge on the disorder's genetic architecture; (b) a discussion on whether this genetic architecture is 'unique' to SLD or, alternatively, whether there is an underlying common genetic background with other neurodevelopmental disorders; and, (c) a brief discussion on whether we are at a position of generating meaningful correlations between genetic findings and anatomical data from neuroimaging studies or specific molecular/cellular pathways. We conclude with open research questions that could drive future research directions.

8.
Oxid Med Cell Longev ; 2021: 8817502, 2021.
Article in English | MEDLINE | ID: mdl-34040693

ABSTRACT

Soluble epoxide hydrolase 2 (EPHX2) is an enzyme promoting increased cellular apoptosis through induction of oxidative stress (OS) and inflammation. The EPHX2 gene which encodes soluble EPHX2 might be implicated in the pathogenesis and development of OS and atherosclerosis. We aimed to assess the possible association between two functional polymorphisms of the EPHX2 gene (rs2741335 and rs11780592) with oxidized LDL (ox-LDL), carotid atherosclerosis, mortality, and cardiovascular (CV) disease in 118 patients with diabetic chronic kidney disease (CKD). At baseline, ox-LDL and carotid intima-media thickness (cIMT) were evaluated and all patients were followed for seven years with outcomes all-cause mortality and CV events. rs11780592 EPHX2 polymorphism was associated with ox-LDL, cIMT, albuminuria, and hypertension. Compared to AG and GG, AA homozygotes had higher values of albuminuria, ox-LDL, and cIMT (p = 0.046, p = 0.003, and p = 0.038, respectively). These associations remained significant, even after grouping for the G allele. After the follow-up period, 42/118 patients died (30/60 with AA genotype, 11/42 with AG genotype, and 1/12 with GG genotype) and 49/118 experienced a new CV event (fatal or nonfatal). The Kaplan-Meier analysis revealed that patients with the AA genotype exhibited a significantly higher mortality risk, compared to patients with AG and GG genotypes (p = 0.006). This association became even stronger, when AG and GG genotypes were grouped (AA vs. AG/GG, p = 0.002). AA homozygotes were strongly associated with all-cause mortality in both univariate (hazard ratio (HR) = 2.74, confidence interval (CI) = 1.40-5.35, p = 0.003) and multivariate Cox regression analysis (HR = 2.61, CI = 1.32-5.17, p = 0.006). In conclusion, our study demonstrated that genetic variations of EPHX2 gene were associated with increased circulating ox-LDL, increased cIMT, and all-cause mortality in diabetic CKD. Since EPHX2 regulates the cholesterol efflux and the oxidation of LDL in foam cells and macrophages, our study suggests that a genetic basis to endothelial dysfunction and OS might be present in diabetic CKD.


Subject(s)
Diabetic Nephropathies/genetics , Diabetic Nephropathies/mortality , Epoxide Hydrolases/metabolism , Genetic Predisposition to Disease/genetics , Lipoproteins, LDL/metabolism , Polymorphism, Genetic/genetics , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/mortality , Aged , Epoxide Hydrolases/genetics , Female , Genotype , Humans , Male , Survival Analysis
9.
Diab Vasc Dis Res ; 17(6): 1479164120970892, 2020.
Article in English | MEDLINE | ID: mdl-33164551

ABSTRACT

BACKGROUND: Approximately one third of type 2 diabetes mellitus (T2DM) cases present with diabetic nephropathy (DN), the leading cause of end-stage renal disease. Inflammation plays an important role in T2DM disease and DN pathogenesis. NLRP3 inflammasomes are complexes that regulate interleukin-1B (IL-1B) and IL-18 secretion, both involved in inflammatory responses. Activation of NLRP3 is associated with DN onset and progression. Here, we explore whether DN is associated with variants in genes encoding key members of the NLRP3 inflammasome pathway. METHODS: Using genome-wide association data, we performed a pilot case-control association study, between 101 DN-T2DM and 185 non-DN-T2DM cases from the Hellenic population across six NLRP3 inflammasome pathway genes. RESULTS: Three common CARD8 variants confer decreased risk for DN, namely rs11665831 (OR = 0.62, p = 0.016), rs11083925 (OR = 0.65, p = 0.021), and rs2043211 (OR = 0.66, p = 0.026), independent of sex or co-inheritance with an IL-1B variant. CONCLUSION: CARD8 acts as an NLRP3, NF-κB and caspase-1 inhibitor; perhaps, alterations in the cross-talk between CARD8, NF-κB, and NLRP3, which could affect the pro-inflammatory environment in T2DM, render diabetic carriers of certain common CARD8 variants potentially less likely to develop T2DM-related pro-inflammatory responses followed by DN. These preliminary, yet novel, observations will require validation in larger cohorts from several ethnic groups.


Subject(s)
CARD Signaling Adaptor Proteins/genetics , Diabetes Mellitus, Type 2/complications , Diabetic Nephropathies/genetics , Neoplasm Proteins/genetics , Polymorphism, Single Nucleotide , Adult , CARD Signaling Adaptor Proteins/immunology , Case-Control Studies , Diabetes Mellitus, Type 2/diagnosis , Diabetic Nephropathies/diagnosis , Diabetic Nephropathies/immunology , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Inflammasomes/immunology , Male , Middle Aged , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Neoplasm Proteins/immunology , Phenotype , Pilot Projects , Risk Assessment , Risk Factors
10.
J Steroid Biochem Mol Biol ; 198: 105549, 2020 04.
Article in English | MEDLINE | ID: mdl-31770575

ABSTRACT

Accumulating evidence suggests a potential implication of vitamin D biological network in the pathogenesis of diabetes mellitus. The megalin-cubilin endocytotic system constitutes a key transport structure, with a modulating role in vitamin D metabolism. We aimed to assess the contribution of variants in the CUBN gene to the genetic risk of Type 2 Diabetes Mellitus (T2DM). 95 polymorphisms within CUBN were genotyped in 716 patients with T2DM and 542 controls of Greek origin. Samples were analyzed on Illumina Human PsychArray. Permutation test analysis was implemented to determine statistical significance. Twenty-five-hydroxy-vitamin-D [25(OH)D)] levels were measured in a sub-group of participants (n = 276). Permutation analysis associated rs11254375_G/T (pemp = 0.00049, OR = 1.482), rs6602175_G/T (pemp = 0.016, OR = 0.822), rs1801224_G/T (pemp = 0.025, OR = 0.830), rs4366393_A/G (pemp = 0.028, OR = 0.829) and rs7071576_A/G (pemp = 0.04, OR = 1.219) with T2DM. Mean 25(OH)D concentrations were significantly lower in patients with T2DM compared to controls (16.70 ±â€¯6.69 ng/ml vs 18.51 ±â€¯6.71 ng/ml, p < 0.001), although both groups were vitamin D deficient. In a further quantitative analysis, rs41301097 was strongly associated with higher 25(OH)D concentrations (p = 5.233e-6, beta = 15.95). Our results indicate a potential role of CUBN gene in T2DM genetic susceptibility in the Greek population. These findings may also denote an indirect effect of vitamin D metabolism dysregulation on the pathogenesis of T2DM. Further studies are required to replicate our findings and clarify the complex underlying mechanisms.


Subject(s)
Diabetes Mellitus, Type 2/genetics , Polymorphism, Single Nucleotide , Receptors, Cell Surface/genetics , Vitamin D/blood , Aged , Aged, 80 and over , Diabetes Mellitus, Type 2/blood , Female , Genetic Predisposition to Disease , Greece , Humans , Male , Middle Aged
11.
Alzheimer Dis Assoc Disord ; 33(1): 7-14, 2019.
Article in English | MEDLINE | ID: mdl-30681437

ABSTRACT

PURPOSE: Understanding the healthy brain aging process is key to uncover the mechanisms that lead to pathologic age-related neurodegeneration, including progression to Alzheimer disease (AD). We aimed to address the issue of pathologic heterogeneity that often underlies a clinical AD diagnosis. METHODS: We performed a deep whole-genome sequencing study aiming to identify variants that are associated specifically with healthy brain aging. PATIENTS: We examined samples from the community-based longitudinal Vienna Transdanubian Aging study comparing neuropathologically "healthy" aging in individuals above 80 years of age with pure AD patients of the same age. RESULTS: Focusing on potentially functional variants, we discovered a single variant (rs10149146) that lies on the autophagy-associated TECPR2 gene and was carried by 53.6% of the "healthy" brain elderly individuals (15/28). An additional nonsynonymous variant on the CINP gene (encoding a cell cycle checkpoint protein) was also found in 46% of healthy controls. Both variants are absent from all AD cases. TECPR2 and CINP appear to be "partner" genes in terms of regulation and their associated transcription factors have been previously implicated in AD and neurodegeneration. CONCLUSIONS: Our study underlines the strength of neuropathology-driven definitions in genetic association studies and points to a potentially neuroprotective effect of key molecules of autophagy and cell cycle control.


Subject(s)
Aging/genetics , Brain/pathology , Carrier Proteins/genetics , Nerve Tissue Proteins/genetics , Neuropathology , Whole Genome Sequencing , Aged, 80 and over , Alzheimer Disease/genetics , Austria , Female , Humans , Longitudinal Studies , Male
12.
Eur Child Adolesc Psychiatry ; 28(1): 91-109, 2019 Jan.
Article in English | MEDLINE | ID: mdl-29982875

ABSTRACT

Genetic predisposition, autoimmunity and environmental factors [e.g. pre- and perinatal difficulties, Group A Streptococcal (GAS) and other infections, stress-inducing events] might interact to create a neurobiological vulnerability to the development of tics and associated behaviours. However, the existing evidence for this relies primarily on small prospective or larger retrospective population-based studies, and is therefore still inconclusive. This article describes the design and methodology of the EMTICS study, a longitudinal observational European multicentre study involving 16 clinical centres, with the following objectives: (1) to investigate the association of environmental factors (GAS exposure and psychosocial stress, primarily) with the onset and course of tics and/or obsessive-compulsive symptoms through the prospective observation of at-risk individuals (ONSET cohort: 260 children aged 3-10 years who are tic-free at study entry and have a first-degree relative with a chronic tic disorder) and affected individuals (COURSE cohort: 715 youth aged 3-16 years with a tic disorder); (2) to characterise the immune response to microbial antigens and the host's immune response regulation in association with onset and exacerbations of tics; (3) to increase knowledge of the human gene pathways influencing the pathogenesis of tic disorders; and (4) to develop prediction models for the risk of onset and exacerbations of tic disorders. The EMTICS study is, to our knowledge, the largest prospective cohort assessment of the contribution of different genetic and environmental factors to the risk of developing tics in putatively predisposed individuals and to the risk of exacerbating tics in young individuals with chronic tic disorders.


Subject(s)
Tic Disorders/complications , Tic Disorders/diagnosis , Adolescent , Child , Child, Preschool , Cohort Studies , Europe , Female , Genetic Predisposition to Disease , Humans , Male , Risk Factors , Tic Disorders/pathology
13.
Diab Vasc Dis Res ; 15(4): 340-343, 2018 07.
Article in English | MEDLINE | ID: mdl-29392977

ABSTRACT

BACKGROUND: Inflammation plays a pivotal role in the pathogenesis of diabetes and its complications. Arachidonic acid lipoxygenases have been intensively studied in their role in inflammation in metabolic pathways. Thus, we aimed to explore variants of lipoxygenase genes (arachidonate lipoxygenase genes) in a diabetes adult population using a case-control study design. METHODS: Study population consisted of 1285 elderly participants, 716 of whom had type 2 diabetes mellitus. The control group consisted of non-diabetes individuals with no history of diabetes history and with a glycated haemoglobin <6.5% (<48 mmol/mol)] and fasting plasma glucose levels <126 mg/dL. Blood samples were genotyped on Illumina Infinium PsychArray. Variants of ALOX5, ALOX5AP, ALOX12, ALOX15 were selected. All statistical analyses were undertaken within PLINK and SPSS packages utilising permutation analysis tests. RESULTS: Our findings showed an association of rs9669952 (odds ratio = 0.738, p = 0.013) and rs1132340 (odds ratio = 0.652, p = 0.008) in ALOX5AP and rs11239524 in ALOX5 gene with disease (odds ratio = 0.808, p = 0.038). Rs9315029 which is located near arachidonate ALOX5AP also associated with type 2 diabetes mellitus ( p = 0.025). No variant of ALOX12 and ALOX15 genes associated with disease. CONCLUSION: These results indicate a potential protective role of ALOX5AP and 5-arachidonate lipoxygenase gene in diabetes pathogenesis, indicating further the importance of the relationship between diabetes and inflammation. Larger population studies are required to replicate our findings.


Subject(s)
5-Lipoxygenase-Activating Proteins/genetics , Arachidonate 5-Lipoxygenase/genetics , Diabetes Mellitus, Type 2/genetics , Polymorphism, Single Nucleotide , Aged , Aged, 80 and over , Arachidonate 12-Lipoxygenase/genetics , Arachidonate 15-Lipoxygenase/genetics , Case-Control Studies , Diabetes Mellitus, Type 2/enzymology , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/prevention & control , Female , Genetic Association Studies , Genetic Predisposition to Disease , Greece/epidemiology , Humans , Logistic Models , Male , Middle Aged , Odds Ratio , Phenotype , Principal Component Analysis , Protective Factors , Risk Factors
14.
Int Urol Nephrol ; 50(2): 321-329, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29196930

ABSTRACT

PURPOSE: Cardiovascular (CV) events are the first cause of death in patients with chronic renal disease (CKD) and in patients with type 2 diabetes mellitus (DM2). The combination of CKD and DM2 elevates the risk of both cardiovascular disease (CVD) and death in this high-risk population. Besides traditional risk factors, such as dyslipidemia, smoking, obesity, and carotid atherosclerosis, novel factors are under investigation such as genetic polymorphisms. Lipoxygenases (LOXs) and their genes are of critical importance in oxidative stress, inflammation, and atherosclerosis. The aim of the study is to clarify a potential ALOX12 role in CVD presence and progress of diabetic patients in different stages of nephropathy. METHODS: We studied 145 patients with a documented history of DM2 for at least 10 years and diabetic nephropathy (DN), mean age 68 ± 9 years, body mass index 31 ± 5 kg/m2, and different stages of renal disease, depending on glomerular filtration rate. The sample population consisted of two groups: 108 DM2 patients with DN in all five stages of CKD and 37 DM2 patients as controls. Anthropometric and clinical characteristics, interview for history of previous CV event, and assessment of carotid intima-media thickness (cIMT) were recorded at baseline. All patients were genotyped for ALOX12 polymorphisms with focus on rs14309. Genotypes (AA, AG, and GG) were evaluated for any possible role in CVD, and grouping was performed on A genotype, which is the dominant model. All participants were followed over a period of 7 years, and the end points studied were all-cause mortality, CV mortality, and CV events. CV events were defined as myocardial infarction (MI), stroke, or peripheral artery disease. RESULTS: The GG genotype has been significantly associated with cIMT levels above 0.86 mm and with history of MI. Regarding the presence of an atherosclerotic plaque in either carotid artery, no significant association was found when the genotypes were assessed on their own. After grouping, though, GG genotype revealed a significant association between carotid plaque formation and atheromatosis. Kaplan-Meier analysis revealed that ALOX12 gene GG genotype predicted all-cause mortality, CV mortality, and CV events. Similarly, when AA and AG genotypes were grouped, Kaplan-Meier analysis showed that patients with GG genotype presented an even more significant higher all-cause mortality, CV mortality, and CV events compared with AA and AG genotypes combined. After adjustment for several traditional risk factors, multivariate Cox proportional hazard analysis showed that patients with the GG genotype had a significant higher risk of all-cause mortality, a threefold increase in CV mortality, and a twofold increased risk for CV events compared to patients with the AA or the AG genotype. CONCLUSION: ALOX12 rs14309 GG genotype expression was found to be significantly associated with MI, higher cIMT, increased CV events, CV, and overall mortality. This phenomenon could be partially explained by the increased platelet proaggregatory activity of AA products and the control they exert in thrombotic occurrence and plaque formation.


Subject(s)
Arachidonate 12-Lipoxygenase/genetics , Cardiovascular Diseases/mortality , Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Aged , Cardiovascular Diseases/classification , Cause of Death , Comorbidity , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Diabetic Nephropathies/diagnosis , Diabetic Nephropathies/etiology , Diabetic Nephropathies/genetics , Disease Progression , Female , Follow-Up Studies , Greece/epidemiology , Humans , Male , Middle Aged , Odds Ratio , Patient Acuity , Polymorphism, Genetic
15.
BMC Bioinformatics ; 18(1): 341, 2017 Jul 17.
Article in English | MEDLINE | ID: mdl-28716001

ABSTRACT

BACKGROUND: The increasing volume and complexity of high-throughput genomic data make analysis and prioritization of variants difficult for researchers with limited bioinformatics skills. Variant Ranker allows researchers to rank identified variants and determine the most confident variants for experimental validation. RESULTS: We describe Variant Ranker, a user-friendly simple web-based tool for ranking, filtering and annotation of coding and non-coding variants. Variant Ranker facilitates the identification of causal variants based on novelty, effect and annotation information. The algorithm implements and aggregates multiple prediction algorithm scores, conservation scores, allelic frequencies, clinical information and additional open-source annotations using accessible databases via ANNOVAR. The available information for a variant is transformed into user-specified weights, which are in turn encoded into the ranking algorithm. Through its different modules, users can (i) rank a list of variants (ii) perform genotype filtering for case-control samples (iii) filter large amounts of high-throughput data based on user custom filter requirements and apply different models of inheritance (iv) perform downstream functional enrichment analysis through network visualization. Using networks, users can identify clusters of genes that belong to multiple ontology categories (like pathways, gene ontology, disease categories) and therefore expedite scientific discoveries. We demonstrate the utility of Variant Ranker to identify causal genes using real and synthetic datasets. Our results indicate that Variant Ranker exhibits excellent performance by correctly identifying and ranking the candidate genes CONCLUSIONS: Variant Ranker is a freely available web server on http://paschou-lab.mbg.duth.gr/Software.html . This tool will enable users to prioritise potentially causal variants and is applicable to a wide range of sequencing data.


Subject(s)
Genetic Variation , Genomics/methods , Software , Algorithms , Gene Frequency , Gene Ontology , Genotype , Humans , Internet , Sequence Analysis, DNA
16.
Front Neurosci ; 10: 428, 2016.
Article in English | MEDLINE | ID: mdl-27708560

ABSTRACT

Although the genetic basis of Tourette Syndrome (TS) remains unclear, several candidate genes have been implicated. Using a set of 382 TS individuals of European ancestry we investigated four candidate genes for TS (HDC, SLITRK1, BTBD9, and SLC6A4) in an effort to identify possibly causal variants using a targeted re-sequencing approach by next generation sequencing technology. Identification of possible disease causing variants under different modes of inheritance was performed using the algorithms implemented in VAAST. We prioritized variants using Variant ranker and validated five rare variants via Sanger sequencing in HDC and SLITRK1, all of which are predicted to be deleterious. Intriguingly, one of the identified variants is in linkage disequilibrium with a variant that is included among the top hits of a genome-wide association study for response to citalopram treatment, an antidepressant drug with off-label use also in obsessive compulsive disorder. Our findings provide additional evidence for the implication of these two genes in TS susceptibility and the possible role of these proteins in the pathobiology of TS should be revisited.

17.
Front Neurosci ; 10: 340, 2016.
Article in English | MEDLINE | ID: mdl-27499730

ABSTRACT

Gilles de la Tourette Sydrome (TS) is a childhood onset neurodevelopmental disorder, characterized phenotypically by the presence of multiple motor and vocal tics. It is often accompanied by multiple psychiatric comorbidities, with Attention Deficit/Hyperactivity Disorder (ADHD) among the most common. The extensive co-occurrence of the two disorders suggests a shared genetic background. A major step toward the elucidation of the genetic architecture of TS was undertaken by the first TS Genome-wide Association Study (GWAS) reporting 552 SNPs that were moderately associated with TS (p < 1E-3). Similarly, initial ADHD GWAS attempts and meta-analysis were not able to produce genome-wide significant findings, but have provided insight to the genetic basis of the disorder. Here, we examine the common genetic background of the two neuropsychiatric phenotypes, by meta-analyzing the 552 top hits in the TS GWAS with the results of ADHD first GWASs. We identify 19 significant SNPs, with the top four implicated genes being TBC1D7, GUCY1A3, RAP1GDS1, and CHST11. TBCD17 harbors the top scoring SNP, rs1866863 (p:3.23E-07), located in a regulatory region downstream of the gene, and the third best-scoring SNP, rs2458304 (p:2.54E-06), located within an intron of the gene. Both variants were in linkage disequilibrium with eQTL rs499818, indicating a role in the expression levels of the gene. TBC1D7 is the third subunit of the TSC1/TSC2 complex, an inhibitor of the mTOR signaling pathway, with a central role in cell growth and autophagy. The top genes implicated by our study indicate a complex and intricate interplay between them, warranting further investigation into a possibly shared etiological mechanism for TS and ADHD.

18.
Front Neurosci ; 10: 351, 2016.
Article in English | MEDLINE | ID: mdl-27536211

ABSTRACT

Gilles de la Tourette Syndrome (TS) is a childhood-onset neurodevelopmental disorder that is characterized by multiple motor and phonic tics. It has a complex etiology with multiple genes likely interacting with environmental factors to lead to the onset of symptoms. The genetic basis of the disorder remains elusive. However, multiple resources and large-scale projects are coming together, launching a new era in the field and bringing us on the verge of discovery. The large-scale efforts outlined in this report are complementary and represent a range of different approaches to the study of disorders with complex inheritance. The Tourette Syndrome Association International Consortium for Genetics (TSAICG) has focused on large families, parent-proband trios and cases for large case-control designs such as genomewide association studies (GWAS), copy number variation (CNV) scans, and exome/genome sequencing. TIC Genetics targets rare, large effect size mutations in simplex trios, and multigenerational families. The European Multicentre Tics in Children Study (EMTICS) seeks to elucidate gene-environment interactions including the involvement of infection and immune mechanisms in TS etiology. Finally, TS-EUROTRAIN, a Marie Curie Initial Training Network, aims to act as a platform to unify large-scale projects in the field and to educate the next generation of experts. Importantly, these complementary large-scale efforts are joining forces to uncover the full range of genetic variation and environmental risk factors for TS, holding great promise for identifying definitive TS susceptibility genes and shedding light into the complex pathophysiology of this disorder.

20.
Methods Mol Biol ; 1015: 321-36, 2013.
Article in English | MEDLINE | ID: mdl-23824866

ABSTRACT

Pharmacogenomics studies how the variations of the individuals' genetic makeup are correlated with a person's response to certain drugs in relation to the therapeutic efficiency, clinical outcome, or even survival, and how they affect drug metabolism, transport, or clearance. Yet, since the incidence of these polymorphisms, being either single-point variations or small insertions/deletions, varies among different populations, a systematic collection and documentation of these variations is warranted, in order to facilitate implementation of pharmacogenomics in different populations. Here we review the existing electronic databases related to pharmacogenomics and pay particular attention in the description of the pharmacogenomics module Frequency of Inherited Disorders database (FINDbase), which documents curated allelic frequency data pertaining to 144 pharmacogenomics markers across 14 genes, representing approximately 87,000 individuals from 150 populations and ethnic groups worldwide. Long-term sustainability of these resources aims to contribute to the design, development, and implementation of pharmacogenomics testing towards the application of personalized approaches in medical treatment.


Subject(s)
Databases, Genetic , Gene Frequency/genetics , Pharmacogenetics/methods , Humans , Polymorphism, Genetic , Polymorphism, Single Nucleotide/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...