Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Commun ; 13(1): 6810, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36357403

ABSTRACT

α-synuclein misfolding and aggregation into fibrils is a common feature of α-synucleinopathies, such as Parkinson's disease, in which α-synuclein fibrils are a characteristic hallmark of neuronal inclusions called Lewy bodies. Studies on the composition of Lewy bodies extracted postmortem from brain tissue of Parkinson's patients revealed that lipids and membranous organelles are also a significant component. Interactions between α-synuclein and lipids have been previously identified as relevant for Parkinson's disease pathology, however molecular insights into their interactions have remained elusive. Here we present cryo-electron microscopy structures of six α-synuclein fibrils in complex with lipids, revealing specific lipid-fibril interactions. We observe that phospholipids promote an alternative protofilament fold, mediate an unusual arrangement of protofilaments, and fill the central cavities of the fibrils. Together with our previous studies, these structures also indicate a mechanism for fibril-induced lipid extraction, which is likely to be involved in the development of α-synucleinopathies. Specifically, one potential mechanism for the cellular toxicity is the disruption of intracellular vesicles mediated by fibrils and oligomers, and therefore the modulation of these interactions may provide a promising strategy for future therapeutic interventions.


Subject(s)
Parkinson Disease , Synucleinopathies , Humans , alpha-Synuclein/chemistry , Parkinson Disease/pathology , Cryoelectron Microscopy , Lipids
2.
Commun Biol ; 5(1): 1040, 2022 09 30.
Article in English | MEDLINE | ID: mdl-36180728

ABSTRACT

Parkinson's disease (PD) and Multiple System Atrophy (MSA) are progressive and unremitting neurological diseases that are neuropathologically characterized by α-synuclein inclusions. Increasing evidence supports the aggregation of α-synuclein in specific brain areas early in the disease course, followed by the spreading of α-synuclein pathology to multiple brain regions. However, little is known about how the structure of α-synuclein fibrils influence its ability to seed endogenous α-synuclein in recipient cells. Here, we aggregated α-synuclein by seeding with homogenates of PD- and MSA-confirmed brain tissue, determined the resulting α-synuclein fibril structures by cryo-electron microscopy, and characterized their seeding potential in mouse primary oligodendroglial cultures. The combined analysis shows that the two patient material-amplified α-synuclein fibrils share a similar protofilament fold but differ in their inter-protofilament interface and their ability to recruit endogenous α-synuclein. Our study indicates that the quaternary structure of α-synuclein fibrils modulates the seeding of α-synuclein pathology inside recipient cells. It thus provides an important advance in the quest to understand the connection between the structure of α-synuclein fibrils, cellular seeding/spreading, and ultimately the clinical manifestations of different synucleinopathies.


Subject(s)
Multiple System Atrophy , Parkinson Disease , Synucleinopathies , alpha-Synuclein/metabolism , Animals , Cryoelectron Microscopy , Mice , Multiple System Atrophy/pathology , alpha-Synuclein/chemistry
3.
Nat Chem ; 14(11): 1278-1285, 2022 11.
Article in English | MEDLINE | ID: mdl-36138110

ABSTRACT

Proteins that contain repeat phenylalanine-glycine (FG) residues phase separate into oncogenic transcription factor condensates in malignant leukaemias, form the permeability barrier of the nuclear pore complex and mislocalize in neurodegenerative diseases. Insights into the molecular interactions of FG-repeat nucleoporins have, however, remained largely elusive. Using a combination of NMR spectroscopy and cryoelectron microscopy, we have identified uniformly spaced segments of transient ß-structure and a stable preformed α-helix recognized by messenger RNA export factors in the FG-repeat domain of human nucleoporin 98 (Nup98). In addition, we have determined at high resolution the molecular organization of reversible FG-FG interactions in amyloid fibrils formed by a highly aggregation-prone segment in Nup98. We have further demonstrated that amyloid-like aggregates of the FG-repeat domain of Nup98 have low stability and are reversible. Our results provide critical insights into the molecular interactions underlying the self-association and phase separation of FG-repeat nucleoporins in physiological and pathological cell activities.


Subject(s)
Nuclear Pore Complex Proteins , Nuclear Pore , Humans , Cryoelectron Microscopy , Nuclear Pore/chemistry , Nuclear Pore/metabolism , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/analysis , Nuclear Pore Complex Proteins/chemistry , Phenylalanine/chemistry , Repetitive Sequences, Amino Acid
4.
Prog Biophys Mol Biol ; 160: 16-25, 2021 03.
Article in English | MEDLINE | ID: mdl-33556421

ABSTRACT

Recent steps towards automation have improved the quality and efficiency of the entire cryo-electron microscopy workflow, from sample preparation to image processing. Most of the image processing steps are now quite automated, but there are still a few steps which need the specific intervention of researchers. One such step is the identification and separation of helical protein polymorphs at early stages of image processing. Here, we tested and evaluated our recent clustering approach on three datasets containing amyloid fibrils, demonstrating that the proposed unsupervised clustering method automatically and effectively identifies the polymorphs from cryo-EM images. As an automated polymorph separation method, it has the potential to complement automated helical picking, which typically cannot easily distinguish between polymorphs with subtle differences in morphology, and is therefore a useful tool for the image processing and structure determination of helical proteins.


Subject(s)
Cryoelectron Microscopy/methods , Islet Amyloid Polypeptide/chemistry , tau Proteins/chemistry , Algorithms , Automation , Cluster Analysis , Crystallization , Databases, Factual , Humans , Image Processing, Computer-Assisted , Protein Conformation
5.
Curr Opin Struct Biol ; 61: 173-181, 2020 04.
Article in English | MEDLINE | ID: mdl-32028106

ABSTRACT

Single-particle cryo-electron microscopy (cryo-EM) is increasingly used as a technique to determine the atomic structure of challenging biological systems. Recent advances in microscope engineering, electron detection, and image processing have allowed the structural determination of bigger and more flexible targets than possible with the complementary techniques X-ray crystallography and NMR spectroscopy. However, there exist many biological targets for which atomic resolution cannot be currently achieved with cryo-EM, making unambiguous determination of the protein structure impossible. Although determining the structure of large biological systems using solely NMR is often difficult, highly complementary experimental atomic-level data for each molecule can be derived from the spectra, and used in combination with cryo-EM data. We review here strategies with which both techniques can be synergistically combined, in order to reach detail and understanding unattainable by each technique acting alone; and the types of biological systems for which such an approach would be desirable.


Subject(s)
Cryoelectron Microscopy , Magnetic Resonance Spectroscopy , Models, Molecular , Algorithms , Cryoelectron Microscopy/methods , Magnetic Resonance Spectroscopy/methods , Molecular Conformation , Molecular Structure
6.
Biochem J ; 476(13): 1975-1994, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31235482

ABSTRACT

The trifunctional enzyme (TFE) catalyzes the last three steps of the fatty acid ß-oxidation cycle. Two TFEs are present in Escherichia coli, EcTFE and anEcTFE. EcTFE is expressed only under aerobic conditions, whereas anEcTFE is expressed also under anaerobic conditions, with nitrate or fumarate as the ultimate electron acceptor. The anEcTFE subunits have higher sequence identity with the human mitochondrial TFE (HsTFE) than with the soluble EcTFE. Like HsTFE, here it is found that anEcTFE is a membrane-bound complex. Systematic enzyme kinetic studies show that anEcTFE has a preference for medium- and long-chain enoyl-CoAs, similar to HsTFE, whereas EcTFE prefers short chain enoyl-CoA substrates. The biophysical characterization of anEcTFE and EcTFE shows that EcTFE is heterotetrameric, whereas anEcTFE is purified as a complex of two heterotetrameric units, like HsTFE. The tetrameric assembly of anEcTFE resembles the HsTFE tetramer, although the arrangement of the two anEcTFE tetramers in the octamer is different from the HsTFE octamer. These studies demonstrate that EcTFE and anEcTFE have complementary substrate specificities, allowing for complete degradation of long-chain enoyl-CoAs under aerobic conditions. The new data agree with the notion that anEcTFE and HsTFE are evolutionary closely related, whereas EcTFE belongs to a separate subfamily.


Subject(s)
Enoyl-CoA Hydratase/metabolism , Escherichia coli K12/enzymology , Escherichia coli Proteins/metabolism , Aerobiosis , Anaerobiosis , Catalysis , Enoyl-CoA Hydratase/chemistry , Enoyl-CoA Hydratase/genetics , Escherichia coli K12/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Humans , Oxidation-Reduction , Protein Structure, Quaternary , Substrate Specificity
7.
PLoS Biol ; 17(6): e3000281, 2019 06.
Article in English | MEDLINE | ID: mdl-31185007

ABSTRACT

Rhino- and enteroviruses are important human pathogens, against which no antivirals are available. The best-studied inhibitors are "capsid binders" that fit in a hydrophobic pocket of the viral capsid. Employing a new class of entero-/rhinovirus inhibitors and by means of cryo-electron microscopy (EM), followed by resistance selection and reverse genetics, we discovered a hitherto unknown druggable pocket that is formed by viral proteins VP1 and VP3 and that is conserved across entero-/rhinovirus species. We propose that these inhibitors stabilize a key region of the virion, thereby preventing the conformational expansion needed for viral RNA release. A medicinal chemistry effort resulted in the identification of analogues targeting this pocket with broad-spectrum activity against Coxsackieviruses B (CVBs) and compounds with activity against enteroviruses (EV) of groups C and D, and even rhinoviruses (RV). Our findings provide novel insights in the biology of the entry of entero-/rhinoviruses and open new avenues for the design of broad-spectrum antivirals against these pathogens.


Subject(s)
Capsid Proteins/ultrastructure , Capsid/drug effects , Capsid/ultrastructure , Amino Acid Sequence/genetics , Amino Acids/genetics , Antigens, Viral , Antiviral Agents , Binding Sites , Capsid/metabolism , Capsid Proteins/metabolism , Cryoelectron Microscopy/methods , Drug Development/methods , Enterovirus/drug effects , Enterovirus/ultrastructure , Humans , Models, Molecular , Molecular Conformation , Rhinovirus/drug effects , Rhinovirus/ultrastructure , Viral Proteins/chemistry , Viral Proteins/ultrastructure , Virion/genetics
8.
J Virol ; 93(4)2019 02 15.
Article in English | MEDLINE | ID: mdl-30463974

ABSTRACT

Human parechovirus 3 (HPeV3) infection is associated with sepsis characterized by significant immune activation and subsequent tissue damage in neonates. Strategies to limit infection have been unsuccessful due to inadequate molecular diagnostic tools for early detection and the lack of a vaccine or specific antiviral therapy. Toward the latter, we present a 2.8-Å-resolution structure of HPeV3 in complex with fragments from a neutralizing human monoclonal antibody, AT12-015, using cryo-electron microscopy (cryo-EM) and image reconstruction. Modeling revealed that the epitope extends across neighboring asymmetric units with contributions from capsid proteins VP0, VP1, and VP3. Antibody decoration was found to block binding of HPeV3 to cultured cells. Additionally, at high resolution, it was possible to model a stretch of RNA inside the virion and, from this, identify the key features that drive and stabilize protein-RNA association during assembly.IMPORTANCE Human parechovirus 3 (HPeV3) is receiving increasing attention as a prevalent cause of sepsis-like symptoms in neonates, for which, despite the severity of disease, there are no effective treatments available. Structural and molecular insights into virus neutralization are urgently needed, especially as clinical cases are on the rise. Toward this goal, we present the first structure of HPeV3 in complex with fragments from a neutralizing monoclonal antibody. At high resolution, it was possible to precisely define the epitope that, when targeted, prevents virions from binding to cells. Such an atomic-level description is useful for understanding host-pathogen interactions and viral pathogenesis mechanisms and for finding potential cures for infection and disease.


Subject(s)
Antibodies, Neutralizing/immunology , Parechovirus/immunology , Parechovirus/ultrastructure , Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Capsid/metabolism , Capsid Proteins/immunology , Cell Line, Tumor , Cryoelectron Microscopy/methods , Epitopes/metabolism , Humans , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/ultrastructure
9.
Sci Rep ; 7(1): 12075, 2017 09 21.
Article in English | MEDLINE | ID: mdl-28935894

ABSTRACT

Human parechovirus 3 (HPeV3), a member of the Picornavirus family, is frequently detected worldwide. However, the observed seropositivity rates for HPeV3 neutralizing antibodies (nAbs) vary from high in Japan to low in the Netherlands and Finland. To study if this can be explained by technical differences or antigenic diversity among HPeV3 strains included in the serological studies, we determined the neutralizing activity of Japanese and Dutch intravenous immunoglobulin batches (IVIG), a rabbit HPeV3 hyperimmune polyclonal serum, and a human HPeV3-specific monoclonal antibody (mAb) AT12-015, against the HPeV3 A308/99 prototype strain and clinical isolates from Japan, the Netherlands and Australia, collected between 1989 and 2015. The rabbit antiserum neutralized all HPeV3 isolates whereas the neutralization capacity of the IVIG batches varied, and the mAb exclusively neutralized the A308/99 strain. Mapping of the amino acid variation among a subset of the HPeV3 strains on an HPeV3 capsid structure revealed that the majority of the surface-exposed amino acid variation was located in the VP1. Furthermore, amino acid mutations in a mAb AT12-015-resistant HPeV3 A308/99 variant indicated the location for potential antigenic determinants. Virus aggregation and the observed antigenic diversity in HPeV3 can explain the varying levels of nAb seropositivity reported in previous studies.


Subject(s)
Antibodies, Neutralizing/immunology , Antigenic Variation/immunology , Capsid Proteins/immunology , Parechovirus/immunology , Picornaviridae Infections/immunology , Amino Acid Sequence , Animals , Antibodies, Neutralizing/genetics , Antigenic Variation/genetics , Capsid Proteins/genetics , Humans , Immune Sera/immunology , Japan , Mutation , Netherlands , Neutralization Tests , Parechovirus/classification , Parechovirus/physiology , Picornaviridae Infections/virology , Rabbits , Sequence Homology, Amino Acid , Species Specificity
10.
PLoS Comput Biol ; 11(3): e1004146, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25793998

ABSTRACT

Cryo-electron microscopy permits 3-D structures of viral pathogens to be determined in remarkable detail. In particular, the protein containers encapsulating viral genomes have been determined to high resolution using symmetry averaging techniques that exploit the icosahedral architecture seen in many viruses. By contrast, structure determination of asymmetric components remains a challenge, and novel analysis methods are required to reveal such features and characterize their functional roles during infection. Motivated by the important, cooperative roles of viral genomes in the assembly of single-stranded RNA viruses, we have developed a new analysis method that reveals the asymmetric structural organization of viral genomes in proximity to the capsid in such viruses. The method uses geometric constraints on genome organization, formulated based on knowledge of icosahedrally-averaged reconstructions and the roles of the RNA-capsid protein contacts, to analyse cryo-electron tomographic data. We apply this method to the low-resolution tomographic data of a model virus and infer the unique asymmetric organization of its genome in contact with the protein shell of the capsid. This opens unprecedented opportunities to analyse viral genomes, revealing conserved structural features and mechanisms that can be targeted in antiviral drug design.


Subject(s)
Genome, Viral/genetics , RNA Viruses/genetics , RNA Viruses/ultrastructure , Computational Biology , Cryoelectron Microscopy , Levivirus , Models, Molecular , Tomography
SELECTION OF CITATIONS
SEARCH DETAIL