Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Res Notes ; 7: 268, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24761774

ABSTRACT

BACKGROUND: Proper conservation of plant samples, especially during remote field collection, is essential to assure quality of extracted DNA. Tropical plant species contain considerable amounts of secondary compounds, such as polysaccharides, phenols, and latex, which affect DNA quality during extraction. The suitability of ethanol (96% v/v) as a preservative solution prior to DNA extraction was evaluated using leaves of Jatropha curcas and other tropical species. RESULTS: Total DNA extracted from leaf samples stored in liquid nitrogen or ethanol from J. curcas and other tropical species (Theobroma cacao, Coffea arabica, Ricinus communis, Saccharum spp., and Solanum lycopersicon) was similar in quality, with high-molecular-weight DNA visualized by gel electrophoresis. DNA quality was confirmed by digestion with EcoRI or HindIII and by amplification of the ribosomal gene internal transcribed spacer region. Leaf tissue of J. curcas was analyzed by light and transmission electron microscopy before and after exposure to ethanol. Our results indicate that leaf samples can be successfully preserved in ethanol for long periods (30 days) as a viable method for fixation and conservation of DNA from leaves. The success of this technique is likely due to reduction or inactivation of secondary metabolites that could contaminate or degrade genomic DNA. CONCLUSIONS: Tissue conservation in 96% ethanol represents an attractive low-cost alternative to commonly used methods for preservation of samples for DNA extraction. This technique yields DNA of equivalent quality to that obtained from fresh or frozen tissue.


Subject(s)
DNA, Plant/isolation & purification , Ethanol/chemistry , Plants/metabolism , Preservation, Biological , Tropical Climate , Freezing , Plant Leaves/cytology , Plant Leaves/metabolism , Plant Leaves/ultrastructure
2.
Plant Physiol Biochem ; 57: 181-92, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22721948

ABSTRACT

Plant legumains, also termed vacuolar processing enzymes (VPEs), are cysteine peptidases that play key roles in plant development, senescence, programmed cell death and defense against pathogens. Despite the increasing number of reports on plant cysteine peptidases, including VPEs, the characterization of sugarcane VPEs and their inhibition by endogenous cystatins have not yet been described. This is the first report of the biochemical characterization of a sugarcane cysteine peptidase. In this work, a recombinant sugarcane legumain was expressed in Pichia pastoris and characterized. Kinetic studies of the recombinant CaneLEG revealed that this enzyme has the main characteristics of VPEs, such as self-activation and activity under acidic pH. CaneLEG activity was strongly inhibited when incubated with sugarcane cystatin 3 (CaneCPI-3). Quantitative analysis of CaneLEG and CaneCPI-3 gene expression indicated a tissue-specific expression pattern for both genes throughout sugarcane growth, with the strong accumulation of CaneLEG transcripts throughout the internode development. Furthermore, the CaneLEG and CaneCPI-3 genes exhibited up-regulation in plantlets treated with abscisic acid (ABA). These results suggest that CaneCPI-3 may be a potential endogenous inhibitor of CaneLEG and these genes may be involved in plant stress response mediated by ABA. Also, the expression analysis provides clues for the putative involvement of CaneLEG and CaneCPI-3 in sugarcane development and phytohormone response.


Subject(s)
Cysteine Endopeptidases/metabolism , Saccharum/enzymology , Abscisic Acid/pharmacology , Cysteine Endopeptidases/genetics , Gene Expression Regulation, Plant/drug effects , Pichia/genetics , Pichia/metabolism , Plant Growth Regulators/genetics , Plant Growth Regulators/metabolism , Saccharum/drug effects , Saccharum/metabolism
3.
Am J Bot ; 99(6): e237-9, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22575369

ABSTRACT

PREMISE OF THE STUDY: Microsatellite primers were developed for Jatropha curcas (Euphorbiaceae), a tree species with large potential for biofuel production, to investigate its natural genetic diversity and mating system to facilitate the establishment of tree improvement and conservation programs. METHODS AND RESULTS: Using a protocol for genomic library enrichment, 104 clones containing 195 repeat motifs were identified. Primer pairs were developed for 40 microsatellite loci and validated in 41 accessions of J. curcas from six provenances. Nine loci were polymorphic revealing from two to eight alleles per locus, and six primers were able to amplify alleles in the congeners J. podagrica, J. pohliana, and J. gossypifolia, but not in other Euphorbiaceae species, such as Hevea brasiliensis, Manihot esculenta, or Ricinus communis. CONCLUSIONS: The primers developed here revealed polymorphic loci that are suitable for genetic diversity and structure, mating system, and gene flow studies in J. curcas, and some congeners.


Subject(s)
DNA Primers/genetics , Jatropha/genetics , Microsatellite Repeats/genetics , Plant Leaves/genetics , Alleles , Ricinus communis/genetics , DNA, Plant/chemistry , DNA, Plant/genetics , Genetic Variation , Genotype , Hevea/genetics , Jatropha/classification , Manihot/genetics , Molecular Sequence Data , Polymorphism, Genetic , Sequence Analysis, DNA , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL