Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Environ Pollut ; 320: 121003, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36623785

ABSTRACT

Using benthic foraminifera, we evaluate the ecological quality status (EcoQS) of transitional waters of the Guanabara Bay (SE Brazil) by applying the diversity-based index exp (H'bc) and the sensitivity-based Foram-AMBI for the first time in South America. The Guanabara Bay was selected for this study as it is one of the largest transitional ecosystems in the State of Rio de Janeiro and has been severely impacted by anthropogenic activities. Concentrations of potentially toxic elements (PTEs) were assessed by sequential chemical extraction in three phases (i.e., dissolved in water, adsorbed on organic matter, and Mn oxy-hydroxides). Total organic carbon, total nitrogen, and stable isotope (δ13C and δ15N) signatures of organic matter were analyzed to trace environmental stress. The Ammonia/Elphidium ratio suggests hypoxic conditions at most of the sampled sites. Principal component analysis identifies the first component as environmental stress underlying organic matter and PTE enrichment (in all three phases), which is positively related to Foram-AMBI and negatively to exp (H'bc). The exp (H'bc) and Foram-AMBI indices reveal that stations near the Governador Island and Niterói margin have the worst EcoQS, showing medium to extreme pollution. Additionally, Foram-AMBI and exp (H'bc) provide a congruent EcoQS classification for ∼64% of the sites. Although these results are promising, they suggest that a significant effort should be made to obtain better knowledge of foraminiferal ecological requirements to employ benthic foraminifera as a biomonitoring and management method.


Subject(s)
Foraminifera , Water Pollutants, Chemical , Geologic Sediments/analysis , Ecosystem , Bays , Brazil , Environmental Monitoring/methods , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis
2.
Environ Sci Pollut Res Int ; 29(46): 69652-69679, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35576033

ABSTRACT

We analyze potential Late Holocene metal contamination along a sediment core collected in the distal zone of Ria de Vigo (North Spain). Statistical treatment of the dataset based on a multiproxy approach enabled us to identify and disentangle factors influencing the depositional processes and the preservation of the records of this activity in the area over the last ≈3000 years BP. Some layers of the analyzed core have significant enrichment in Cu and a moderate enrichment in Ag, Mo, As, Sb, S, Zn, Ni, Sn, Cd, Cr, Co, Pb, and Li. The enrichment of these elements in some layers of this core may be related to mining activities that have taken place since classical times in the region. Successive phases of pollution were identified along the core KSGX24 related to the Late Bronze Age (≈3000-2450 years BP), Iron Age (≈2450-1850 years BP), Roman times (≈1850-1550 years BP), Middle Ages (≈1250-500 years BP), and industrial and modern (≈250-0 years BP) anthropic activities. The protection of the Cies Islands, the erosive and transport capacity of the rivers in the region, oscillations of the oceanographic and climatic regime, atmospheric contamination, and diagenetic sedimentary processes might have contributed to the accumulation and preservation of this record in the distal region of the Ria de Vigo. The studied core shows that the industrial and preindustrial anthropic impacts caused an environmental liability and contributed to the presence of moderate to heavy pollution of various metals in surface and subsurface sediment layers in the distal sector of the Ria de Vigo, which could be a hazard to biota.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Cadmium , Environmental Monitoring , Geologic Sediments , Lead , Metals, Heavy/analysis , Rivers , Spain , Water Pollutants, Chemical/analysis
3.
Mar Pollut Bull ; 177: 113485, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35278908

ABSTRACT

The Sepetiba Bay (SB; SE Brazil) has been severely affected by growing of urbanization and industrial activity. This work aims to analyze the evolution of contamination by metals of sediments in SB. The results show a marked increasing trend in the concentrations of potentially toxic elements (PTEs), which is consistent with the rapid populational and industrial growth, mostly since 1970 CE. The remobilization and redistribution of sediments by currents have contributed to the dispersion of metals from the main source of pollutants to relatively distant regions. "Moderately to strongly polluted" sediments are also recorded in some sites in deeper sedimentary layers (namely in preindustrial periods), probably due to lithologic sources of the sediments. The concentrations of PTEs in SB are relatively high when compared with those found globally and in other Brazilian water bodies. Samples of high-resolution sediment cores confirmed that potential ecological risk to the coastal system is influenced not only through human actions but also by natural causes.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Bays , Brazil , Environmental Monitoring/methods , Geologic Sediments , Humans , Metals, Heavy/analysis , Risk Assessment , Water Pollutants, Chemical/analysis
4.
Mar Pollut Bull ; 165: 112113, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33567385

ABSTRACT

This work aims to propose new standards to assess the degree of sediment contamination in saline and brackish environments, since the legislation currently used in Brazil is based on Canadian/American regulations, which do not comply with the conditions in Brazil. This study is based on geochemical analyses of 340 surface sediment samples collected in the Green Coast region (Rio de Janeiro, Brazil), including Mangaratiba, Angra dos Reis and Ribeira coves and Ilha Grande and Sepetiba bays. This region is influenced by industrial, harbor, urban and tourist activities and was affected by a dam rupture episode that released contaminated material. The results show heterogeneity in the distribution and range of metal concentrations in the study area depending on the supply of metals from natural and anthropogenic sources. Environmental characteristics such as coastal and tidal currents, water temperature and salinity, local depth, sediment grain size, sedimentary dynamics and biogeochemical processes influence the dispersion or retention of metals. The pollution load index (PLI) suggests that Sepetiba Bay is the region with the most environmental degradation due to anthropogenic contamination. In this context, we propose the establishment of new levels of contamination according to the Cd, Cr, Cu, Mn, Ni, Pb, V and Zn concentrations in sediments of salt and brackish waters, considering I) background level; II) level 1 - with anthropogenic influence; and III) level 2 - contaminated. The results of this work also suggest that, except for zinc, the range of metal concentrations admitted by Brazilian legislation are quite permissive and not adequate for Brazilian coastal environments.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Brazil , Canada , Environmental Monitoring , Geologic Sediments , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis
5.
Environ Sci Pollut Res Int ; 28(18): 22612-22640, 2021 May.
Article in English | MEDLINE | ID: mdl-33420935

ABSTRACT

Multiproxy approach based on textural, mineralogical, geochemical, and microfaunal analyses on a 176-cm-long core (SP8) has been applied to reconstruct the Holocene paleoenvironmental changes and disentangling natural vs. anthropogenic variability in Marambaia Cove of the Sepetiba Bay (SE Brazil). Sepetiba Bay became a lagoonal system due to the evolution and development of the Marambaia barrier island during the Holocene and the presence of an extensive river basin. Elemental concentrations from pre-anthropogenic layers from the nearby SP7 core have been used to estimate the baseline elemental concentrations for this region and to determine metals enrichment factors (EF), pollution load index (PLI), and sediment pollution index (SPI). Record of the core SP8 provides compelling evidence of the lagoon evolution differentiating the effects of potentially toxic elements (PTEs) under natural vs. anthropic forcing in the last ~ 9.5 ka BP. The study area was probably part of coastal sand ridges between ≈ 9.5 and 7.8 ka BP (radiocarbon date). Events of wash over deposited allochthonous material and organic matter between ≈ 8.6 and 7.8 ka. Climatic event 8.2 ka BP, in which the South American Summer Monsoon was intensified in Brazil causing higher rainfall and moisture was scored by an anoxic event. Accumulation of organic matter resulted in oxygen depletion and even anoxia in the sediment activating biogeochemical processes that resulted in the retention of potentially toxic elements (PTEs). After ≈ 7.8 ka BP at the onset of the Holocene sea-level rise, a marine incursion flooded the Marambaia Cove area (previously exposed to subaerial conditions). Environmental conditions became favorable for the colonization of benthic foraminifera. The Foram Stress Index (FSI) and Exp(H'bc) indicate that the environmental conditions turned from bad to more favorable since ≈ 7.8 ka BP, with maximum health reached at ≈ 5 ka BP, during the mid-Holocene relative sea-level highstand. Since then, the sedimentological and ecological proxies suggest that the system evolved to an increasing degree of confinement. Since ≈ 1975 AD, a sharp increase of silting, Cd, Zn, and organic matter also induced by anthropic activities caused major changes in foraminiferal assemblages with a significant increase of Ammonia/Elphidium Index (AEI), EF, and SPI values and decreasing of FSI and Exp(H'bc) (ecological indicators) demonstrating an evolution from "moderately polluted" to "heavily polluted" environment (bad ecological conditions), under variable suboxic conditions. Thus, core SP8 illustrates the most remarkable event of anthropogenic forcing on the geochemistry of the sediments and associated pollution loads and its negative effect on benthic organisms.


Subject(s)
Foraminifera , Water Pollutants, Chemical , Bays , Brazil , Environmental Monitoring , Geologic Sediments , Water Pollutants, Chemical/analysis
6.
Environ Monit Assess ; 193(2): 100, 2021 Jan 29.
Article in English | MEDLINE | ID: mdl-33515075

ABSTRACT

This work sheds light on the recent evolution (≈1915-2015 AD) of Sepetiba Bay (SB; SE Brazil), a subtropical coastal lagoon on the southwestern Brazilian coast, based on a multiproxy approach. Variations in geochemical proxies as well as textural, mineralogical and geochronological data allow us to reconstruct temporally constrained changes in the depositional environments along the SP3 sediment core collected from the central area of SB. At the beginning of the twentieth century, the substrate of the study site was composed of coarse-grained sediments, largely sourced from felsic rocks of proximal areas and deposited under moderate to strong shallow marine hydrodynamics. Since the 1930s, the study area has undergone silting and received high contributions of materials from mafic rocks sourced by river basins. The SP3 core reveals a shallowing-upward sequence due to human-induced silting with significant eutrophication since the middle of 1970, which was caused by significant enrichment of organic matter that was provided by not only marine productivity but also continental and human waste. In addition, the sediments deposited after 1980 exhibit significant enrichment and are moderately to strongly polluted by Cd and Zn. Metals were dispersed by hydrodynamics from the source areas, but diagenetic processes promoted their retention in the sediments. The potential ecological risk index (PERI) indicates that the level of high (considerable) ecological risk is in sediments deposited in ≈1995 (30-32 cm; subsurface). The applied methodology allowed us to understand the thickness of the bottom sediment affected by eutrophication processes and contaminants. Identical methodologies can be applied in other coastal zones, and can provide useful information to decision makers and stakeholders that manage those areas.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Bays , Brazil , Environmental Monitoring , Eutrophication , Geologic Sediments , Humans , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis
7.
Mar Pollut Bull ; 161(Pt A): 111758, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33096407

ABSTRACT

The spatiotemporal attenuation of Cd and Zn concentrations was assessed in sediments from Sepetiba Bay, which is a coastal system that has been historically impacted by industrial wastes. The evolution of contamination over the years shortly before and after cessation of electroplating industry activities, by the end of 1990's, was elucidated by reviewing the existing datasets for the whole bay area. Metal concentrations exceed Brazilian Sediment Quality Guidelines in most regions, corresponding to concentrations 3 to 4 orders of magnitude higher than background levels and Enrichment Factors reaching values significantly higher than 40 for both elements. In the second decade after electroplating industry closure, the levels of Cd and Zn lowered in most regions of the bay. However, an increase in the relative importance of diffuse sources can mislead the current and future identification of Cd and Zn input, bringing new challenges for environmental monitoring and management for Sepetiba bay.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Brazil , Cadmium , Electroplating , Environmental Monitoring , Geologic Sediments , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Zinc
8.
Mar Pollut Bull ; 158: 111449, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32753225

ABSTRACT

The ecological quality status of the NE region of the Guanabara Bay (SE Brazil), one of the most important Brazilian embayments, is evaluated. For this purpose, sediment samples from in the inner of the Guanabara Bay (GB) were collected and analyzed (grain-size, mineralogy, geochemistry and living foraminifera). In this study, it is hypothesized that the potentially toxic elements (PTEs) concentrations, in solution and associated with organic matter (OMPTEs, potential nutrient source), may represent two potential pathways to impact benthic foraminifers. A multiproxy approach applied to complex statistical analyses and ecological indexes shows that the study area is, in general, eutrophic (with high organic matter and low oxygen content), polluted by PTEs and oil. As a consequence, foraminifera are not abundant and their assemblages are poorly diversified and dominated by some stress-tolerant species (i.e., Ammonia tepida, Quinqueloculina seminula, Cribroelphidium excavatum). The results allow us to identify a set of species sensitive to eutrophication and OMPTEs. Factors such as the increase of organic matter contents and OMPTEs and, in particular of Zn, Cd and Pb, the oxygen depletion and the presence of oil, altogether contribute to a marked reduction in the abundance and diversity of foraminifera. Ammonia-Elphidium Index and the Foram Stress Index confirm that the NE zone of GB is, in general, "heavily polluted", with "poor ecological quality status" and experiences suboxic to anoxic conditions. In light of it, special attention from public authorities and policymakers is required in order to take immediate actions to enable its environmental recovery.


Subject(s)
Foraminifera , Bays , Brazil , Environmental Monitoring , Geologic Sediments
9.
Mar Pollut Bull ; 144: 216-223, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31179991

ABSTRACT

Guanabara Bay (southeastern Brazil) is located in the metropolitan region of the Rio de Janeiro State and is being affected by high levels of anthropization. This work analyzes not only the concentrations of potentially toxic elements (PTEs), but also Pb stable isotopes to trace possible anthropogenic and natural sources of pollutants in the northern region of Guanabara Bay and the Suruí and Magé rivers. The Governador Island Channel, the regions to the north of Governador Island, north and west of Paquetá Island, and the Magé coast are most affected by PTEs. In the study area, high PTE concentrations result from both natural and anthropogenic sources. The main sources of metals include municipal solid waste incineration, atmospheric aerosols, and ore lead tailings, as indicated by Pb isotopes. This work shows that Pb stable isotopes, associated with metal contamination, can improve the assessment of estuarine environment quality.


Subject(s)
Bays/chemistry , Environmental Monitoring/methods , Geologic Sediments/chemistry , Lead/analysis , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Brazil , Islands , Isotopes/analysis , Rivers/chemistry
10.
PLoS One ; 14(1): e0209066, 2019.
Article in English | MEDLINE | ID: mdl-30699123

ABSTRACT

This study compares living (LA) and dead (DA) benthic foraminiferal assemblages and identifies different factors that possibly cause differences in the distribution of both assemblages in the Aveiro Continental Shelf (Portugal). A total of 44 sediment samples was collected during summers of 1994 and 1995 along transects (east-west direction) and between 10 and 200 m water depth. Complex statistical analyses allow us to compare the abundance and composition of the LAs and DAs in function of depth, grain-size and total organic matter in all studied stations even in those where the numbers of individuals were rare in one or both assemblages. The highest densities and diversities of the LAs are found in the middle continental shelf on gravel deposits (coarse and very coarse sands) mostly due to the substrate stability, reduced deposition of fine sedimentary particles, availability of organic matter with high quality related to oceanic primary productivity likely induced by upwelling events, and oxygenated porewaters conditions. The DAs have, in general, higher densities and diversities than the LAs. In the outer continental shelf, the dissimilarity between both assemblages is higher due to the accumulation of tests, low dilution by sedimentary particles and scarcity of living foraminifera. Based on the comparison of LAs and DAs and considering the characteristics of the study area and the species ecology, it has been possible to understand the cause of temporal deviation between the LAs and DAs of benthic foraminifera. This deviation is much more pronounced in the inner shelf where the energy of the waves and the currents induce very dynamic sedimentary processes preventing the development of large LAs and the preservation of DAs. Some deviation also occurs in the middle shelf due to the seasonal loss of empty tests. The most well-preserved time-averaged DAs were found in the outer continental shelf.


Subject(s)
Foraminifera/growth & development , Environmental Monitoring/methods , Geologic Sediments/analysis , Portugal
11.
Acta amaz ; 38(2): 297-306, 2008. ilus, tab
Article in Portuguese | LILACS | ID: lil-488738

ABSTRACT

Os isótopos estáveis de O, H e S foram utilizados para investigar a origem das rochas magmáticas nos Terrenos Jauru e Pontes e Lacerda do SW do Craton Amazônico, estado de Mato Grosso, Brasil. No Terreno Jauru as rochas granitóides do Greenstone belt Alto Jauru e da Suíte Cachoeirinha apresentam valores de δ18O entre +9,0‰ e +6,3‰ que indicam derivação a partir de magmas juvenis. Na Suíte Intrusiva Rio Branco valores de δ18O para rochas básicas estão entre +5,4‰ e +5,8‰ e para rochas félsicas entre +8,7‰ e +9,0‰; rochas intermediárias apresentam valores entre +7,3‰ e +8,3‰. Os valores mais baixos de δ18O, obtidos nas rochas básicas, são compatíveis com derivação mantélica, porém as rochas félsicas apresentam valores de δ18O compatíveis com origem crustais. Análises de isótopos estáveis de H (rocha total) forneceram valores de δD entre - 83‰ e -92‰, diferente das assinaturas de rochas metamórficas e de águas meteóricas. Resultados em sulfetos para isótopos estáveis de S em rochas básicas e intermediárias desta suíte apresentam valores de δ34S coerentes com uma fonte mantélica (entre + 0,7‰ e +3,8‰), enquanto os valores de δ34S (entre +5,2‰ e +6,1‰) obtidos nas rochas félsicas sugerem participação crustal na sua gênese. Na Suíte Santa Helena (Terreno Pontes e Lacerda) os resultados obtidos para δ18O se agrupam entre +4,4‰ e +8,9‰ indicando uma origem mantélica. O presente estudo confirma a importância da aplicação de isótopos estáveis para a compreensão de processos magmáticos e evolução crustal.


Stable isotopes of O, H and S were used to investigate the origin of magmatic rocks of the Jauru and the Pontes e Lacerda Terrains, SW portion of the Amazonian craton, Mato Grosso state, Brazil. Granitic rocks of the Alto Jauru Greenstone belt and Cachoeirinha Suite, Jauru terrain, present δ18O values between +9.0‰ and +6.3‰, indicative of derivation from juvenile magmas. The Rio Branco Intrusive Suite basic and felsic rocks' δ18O values fall, respectively, within +5.4‰ to +5.8‰ and +8.7‰ to +9.0‰ ranges; the intermediate rocks present δ18O between +7.3‰ and +8.3‰. The lower values of δ18O, obtained from basic rocks, are compatible with a mantle source, however the felsic rocks present δ18O values indicative of crustal source. The stable isotopes of hydrogen yielded δD values between - 83‰ and - 92‰, different from the δD signatures of metamorphic rocks and rain water. Sulphur isotopes in sulfides from basic and intermediate rocks of the Rio Branco suite presented δ34S values coherent with a mantle source (between + 0.7‰ and +3.8‰), whereas δ34S values between + 5.2‰ and + 6.1‰, obtained from the felsic rocks, suggest crustal participation in their genesis. For the Santa Helena Suite (Pontes e Lacerda Terrain) the δ18O values fall between +4.4‰ and +8.9‰. The present study confirms the advantages of using stable isotopes to understand magmatic processes and crustal evolution.


Subject(s)
Oxygen Isotopes , Amazonian Ecosystem
SELECTION OF CITATIONS
SEARCH DETAIL
...