Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 749
Filter
1.
bioRxiv ; 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39229212

ABSTRACT

Late-onset Alzheimer's disease (LOAD) research has principally focused on neurons over the years due to their known role in the production of amyloid beta plaques and neurofibrillary tangles. In contrast, recent genomic studies of LOAD have implicated microglia as culprits of the prolonged inflammation exacerbating the neurodegeneration observed in patient brains. Indeed, recent LOAD genome-wide association studies (GWAS) have reported multiple loci near genes related to microglial function, including TREM2, ABI3, and CR1. However, GWAS alone cannot pinpoint underlying causal variants or effector genes at such loci, as most signals reside in non-coding regions of the genome and could presumably confer their influence frequently via long-range regulatory interactions. We elected to carry out a combination of ATAC-seq and high-resolution promoter-focused Capture-C in two human microglial cell models (iPSC-derived microglia and HMC3) in order to physically map interactions between LOAD GWAS-implicated candidate causal variants and their corresponding putative effector genes. Notably, we observed consistent evidence that rs6024870 at the GWAS CASS4 locus contacted the promoter of nearby gene, RTFDC1. We subsequently observed a directionallly consistent decrease in RTFDC1 expression with the the protective minor A allele of rs6024870 via both luciferase assays in HMC3 cells and expression studies in primary human microglia. Through CRISPR-Cas9-mediated deletion of the putative regulatory region harboring rs6024870 in HMC3 cells, we observed increased pro-inflammatory cytokine secretion and decreased DNA double strand break repair related, at least in part, to RTFDC1 expression levels. Our variant-to-function approach therefore reveals that the rs6024870-harboring regulatory element at the LOAD 'CASS4' GWAS locus influences both microglial inflammatory capacity and DNA damage resolution, along with cumulative evidence implicating RTFDC1 as a novel candidate effector gene.

2.
J Sex Med ; 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39271240

ABSTRACT

BACKGROUND: The 3-piece inflatable penile prosthesis (IPP) is the most widely used device for erectile dysfunction refractory to medications, containing a reservoir inserted into the retropubic space (RPS) or an alternative/ectopic space (AES). Indications for removal of the reservoir include malfunction, malposition, or infection. In revision cases without infection, reservoir removal is sometimes optional. AIM: We reviewed outcomes and complications related to reservoir removal from a large multi-institutional series. METHODS: We retrospectively reviewed databases at 6 institutions over 7 years. Patients with artificial urethral sphincter, urethral sling, or mini-jupette were excluded. OUTCOMES: Outcomes and complications related to IPP reservoir removal were analyzed. Data were collected, but only reservoir-related complications at surgery were included. Data were compared between the RPS and AES cohorts to evaluate differences with a χ2 test, with significance at P < .05. RESULTS: Of 215 cases, there were 172 RPS and 43 AES reservoirs. The mean patient age was 65.3 years. An overall 131 procedures were due to malfunction and 49 to malposition of an IPP component; 35 were secondary to infection. Among those retained (n = 44), reasons included reuse, avoiding surrounding structure damage, and difficult dissection. Among those removed (n = 171), 15 required a counterincision. To determine the statistical difference between those removed from the RPS and an AES, the χ2 test result was P = .00059, indicating a significant difference in the need for a counterincision between the groups. Complications included bladder perforation (n = 1) in the RPS group and an avulsion of the epigastric vessels requiring abdominal exploration (n = 1) in the AES group. To determine the statistical difference between RPS and AES complications, the χ2 test result was P = .365, indicating no significant difference between the groups. STRENGTHS AND LIMITATIONS: Strengths include being a multi-institutional study with high-volume skilled implanters. Limitations include being a retrospective review, with implanters exclusively performing penoscrotal incisions and not utilizing an infrapubic approach. Last, there was a lack of long-term follow-up with these patients. CONCLUSIONS: Removal of an IPP reservoir remains safe, with few intraoperative complications. Surgeons should be aware of the inferior epigastric vessels during removal in an AES or be willing to perform a counterincision to avoid injury to surrounding structures. Surgeons should also obtain preoperative imaging to identify the specific location of the reservoir and adjacent anatomy. This is the first multi-institutional study reviewing outcomes related to reservoir removal during IPP revision or removal surgery.

3.
mBio ; : e0187124, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39189743

ABSTRACT

Many microbial biosynthetic gene clusters (BGCs) are inactive under standard laboratory conditions, making characterization of their products difficult. Silent BGCs are likely activated by specific cues in their natural environment, such as the presence of competitors. Growth conditions such as coculture with other microbes, which more closely mimic natural environments, are practical strategies for inducing silent BGCs. Here, we utilize coculture to activate BGCs in nine actinobacteria strains. We observed increased production of the ferrous siderophores siderochelin A and B during coculture of Amycolatopsis strain WAC04611 and Tsukamurella strain WAC06889b. Furthermore, we identified the siderochelin BGC in WAC04611 and discovered that the GntR-family transcription factor sidR3 represses siderochelin production. Deletion of the predicted aminotransferase sidA abolished production of the carboxamides siderochelin A/B and led to the accumulation of the carboxylate siderochelin D. Finally, we deleted the predicted hydroxylase sidB and established that it is essential for siderochelin production. Our findings show that microbial coculture can successfully activate silent BGCs and lead to the discovery and characterization of unknown BGCs for molecules like siderochelin.IMPORTANCESiderophores are vital iron-acquisition elements required by microbes for survival in a variety of environments. Furthermore, many siderophores are essential for the virulence of various human pathogens, making them a possible target for antibacterials. The significance of our work is in the identification and characterization of the previously unknown BGC for the siderophore siderochelin. Our work adds to the growing knowledge of siderophore biosynthesis, which may aid in the future development of siderophore-targeting pharmaceuticals and inform on the ecological roles of these compounds. Furthermore, our work demonstrates that combining microbial coculture with metabolomics is a valuable strategy for identifying upregulated compounds and their BGCs.

4.
Res Sq ; 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39149469

ABSTRACT

The prevalence of dementia among South Asians across India is approximately 7.4% in those 60 years and older, yet little is known about genetic risk factors for dementia in this population. Most known risk loci for Alzheimer's disease (AD) have been identified from studies conducted in European Ancestry (EA) but are unknown in South Asians. Using whole-genome sequence data from 2680 participants from the Diagnostic Assessment of Dementia for the Longitudinal Aging Study of India (LASI-DAD), we performed a gene-based analysis of 84 genes previously associated with AD in EA. We investigated associations with the Hindi Mental State Examination (HMSE) score and factor scores for general cognitive function and five cognitive domains. For each gene, we examined missense/loss-of-function (LoF) variants and brain-specific promoter/enhancer variants, separately, both with and without incorporating additional annotation weights (e.g., deleteriousness, conservation scores) using the variant-Set Test for Association using Annotation infoRmation (STAAR). In the missense/LoF analysis without annotation weights and controlling for age, sex, state/territory, and genetic ancestry, three genes had an association with at least one measure of cognitive function (FDR q<0.1). APOE was associated with four measures of cognitive function, PICALM was associated with HMSE score, and TSPOAP1 was associated with executive function. The most strongly associated variants in each gene were rs429358 (APOE ε4), rs779406084 (PICALM), and rs9913145 (TSPOAP1). rs779406084 is a rare missense mutation that is more prevalent in LASI-DAD than in EA (minor allele frequency=0.075% vs. 0.0015%); the other two are common variants. No genes in the brain-specific promoter/enhancer analysis met criteria for significance. Results with and without annotation weights were similar. Missense/LoF variants in some genes previously associated with AD in EA are associated with measures of cognitive function in South Asians from India. Analyzing genome sequence data allows identification of potential novel causal variants enriched in South Asians.

5.
Antimicrob Agents Chemother ; 68(9): e0027224, 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39133022

ABSTRACT

The effectiveness of ß-lactam antibiotics is increasingly threatened by resistant bacteria that harbor hydrolytic ß-lactamase enzymes. Depending on the class of ß-lactamase present, ß-lactam hydrolysis can occur through one of two general molecular mechanisms. Metallo-ß-lactamases (MBLs) require active site Zn2+ ions, whereas serine-ß-lactamases (SBLs) deploy a catalytic serine residue. The result in both cases is drug inactivation via the opening of the ß-lactam warhead of the antibiotic. MBLs confer resistance to most ß-lactams and are non-susceptible to SBL inhibitors, including recently approved diazabicyclooctanes, such as avibactam; consequently, these enzymes represent a growing threat to public health. Aspergillomarasmine A (AMA), a fungal natural product, can rescue the activity of the ß-lactam antibiotic meropenem against MBL-expressing bacterial strains. However, the effectiveness of this ß-lactam/ß-lactamase inhibitor combination against bacteria producing multiple ß-lactamases remains unknown. We systematically investigated the efficacy of AMA/meropenem combination therapy with and without avibactam against 10 Escherichia coli and 10 Klebsiella pneumoniae laboratory strains tandemly expressing single MBL and SBL enzymes. Cell-based assays demonstrated that laboratory strains producing NDM-1 and KPC-2 carbapenemases were resistant to the AMA/meropenem combination but became drug-susceptible upon adding avibactam. We also probed these combinations against 30 clinical isolates expressing multiple ß-lactamases. E. coli, Enterobacter cloacae, and K. pneumoniae clinical isolates were more susceptible to AMA, avibactam, and meropenem than Pseudomonas aeruginosa and Acinetobacter baumannii isolates. Overall, the results demonstrate that a triple combination of AMA/avibactam/meropenem has potential for empirical treatment of infections caused by multiple ß-lactamase-producing bacteria, especially Enterobacterales.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Escherichia coli , Meropenem , Microbial Sensitivity Tests , beta-Lactamases , Azabicyclo Compounds/pharmacology , beta-Lactamases/metabolism , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Meropenem/pharmacology , Escherichia coli/drug effects , Escherichia coli/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/enzymology , beta-Lactamase Inhibitors/pharmacology , Humans , Drug Resistance, Multiple, Bacterial/drug effects , Drug Resistance, Multiple, Bacterial/genetics , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/enzymology , Drug Combinations , Enterobacter cloacae/drug effects , Enterobacter cloacae/enzymology , Aspartic Acid/analogs & derivatives
6.
medRxiv ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39108532

ABSTRACT

We developed an imputation panel for Alzheimer's disease (AD) and related dementias (ADRD) using whole-genome sequencing (WGS) data from the Alzheimer's Disease Sequencing Project (ADSP). Recognizing the significant associations between structural variants (SVs) and AD, and their underrepresentation in existing public reference panels, our panel uniquely integrates single nucleotide variants (SNVs), short insertions and deletions (indels), and SVs. This panel enhances the imputation of disease susceptibility, including rare AD-associated SNVs, indels, and SVs, onto genotype array data, offering a cost-effective alternative to whole-genome sequencing while significantly augmenting statistical power. Notably, we discovered 10 rare indels nominal significant related to AD that are absent in the TOPMed-r2 panel and identified three suggestive significant (p-value < 1E-05) AD-associated SVs in the genes EXOC3L2 and DMPK, were identified. These findings provide new insights into AD genetics and underscore the critical role of imputation panels in advancing our understanding of complex diseases like ADRD.

7.
J Infect Dis ; 230(1): 239-249, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052715

ABSTRACT

BACKGROUND: Macrolide antibiotics, including azithromycin, can reduce under 5 years of age mortality rates and treat various infections in children in sub-Saharan Africa. These exposures, however, can select for antibiotic-resistant bacteria in the gut microbiota. METHODS: Our previous randomized controlled trial (RCT) of a rapid-test-and-treat strategy for severe acute diarrheal disease in children in Botswana included an intervention (3-day azithromycin dose) group and a control group that received supportive treatment. In this prospective matched cohort study using stools collected at baseline and 60 days after treatment from RCT participants, the collection of antibiotic resistance genes or resistome was compared between groups. RESULTS: Certain macrolide resistance genes increased in prevalence by 13%-55% at 60 days, without differences in gene presence between the intervention and control groups. These genes were linked to tetracycline resistance genes and mobile genetic elements. CONCLUSIONS: Azithromycin treatment for bacterial diarrhea for young children in Botswana resulted in similar effects on the gut resistome as the supportive treatment and did not provide additional selective pressure for macrolide resistance gene maintenance. The gut microbiota of these children contains diverse macrolide resistance genes that may be transferred within the gut upon repeated exposures to azithromycin or coselected by other antibiotics. CLINICAL TRIALS REGISTRATION: NCT02803827.


Subject(s)
Anti-Bacterial Agents , Azithromycin , Diarrhea , Gastrointestinal Microbiome , Humans , Azithromycin/therapeutic use , Azithromycin/administration & dosage , Botswana , Diarrhea/microbiology , Diarrhea/drug therapy , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Child, Preschool , Infant , Prospective Studies , Female , Male , Gastrointestinal Microbiome/drug effects , Gastrointestinal Microbiome/genetics , Drug Resistance, Bacterial/genetics , Feces/microbiology , Bacteria/drug effects , Bacteria/genetics , Bacteria/classification , Bacteria/isolation & purification
8.
Alzheimers Dement ; 20(8): 5247-5261, 2024 08.
Article in English | MEDLINE | ID: mdl-38958117

ABSTRACT

INTRODUCTION: Despite a two-fold risk, individuals of African ancestry have been underrepresented in Alzheimer's disease (AD) genomics efforts. METHODS: Genome-wide association studies (GWAS) of 2,903 AD cases and 6,265 controls of African ancestry. Within-dataset results were meta-analyzed, followed by functional genomics analyses. RESULTS: A novel AD-risk locus was identified in MPDZ on chromosome (chr) 9p23 (rs141610415, MAF = 0.002, p = 3.68×10-9). Two additional novel common and nine rare loci were identified with suggestive associations (P < 9×10-7). Comparison of association and linkage disequilibrium (LD) patterns between datasets with higher and lower degrees of African ancestry showed differential association patterns at chr12q23.2 (ASCL1), suggesting that this association is modulated by regional origin of local African ancestry. DISCUSSION: These analyses identified novel AD-associated loci in individuals of African ancestry and suggest that degree of African ancestry modulates some associations. Increased sample sets covering as much African genetic diversity as possible will be critical to identify additional loci and deconvolute local genetic ancestry effects. HIGHLIGHTS: Genetic ancestry significantly impacts risk of Alzheimer's Disease (AD). Although individuals of African ancestry are twice as likely to develop AD, they are vastly underrepresented in AD genomics studies. The Alzheimer's Disease Genetics Consortium has previously identified 16 common and rare genetic loci associated with AD in African American individuals. The current analyses significantly expand this effort by increasing the sample size and extending ancestral diversity by including populations from continental Africa. Single variant meta-analysis identified a novel genome-wide significant AD-risk locus in individuals of African ancestry at the MPDZ gene, and 11 additional novel loci with suggestive genome-wide significance at p < 9×10-7. Comparison of African American datasets with samples of higher degree of African ancestry demonstrated differing patterns of association and linkage disequilibrium at one of these loci, suggesting that degree and/or geographic origin of African ancestry modulates the effect at this locus. These findings illustrate the importance of increasing number and ancestral diversity of African ancestry samples in AD genomics studies to fully disentangle the genetic architecture underlying AD, and yield more effective ancestry-informed genetic screening tools and therapeutic interventions.


Subject(s)
Alzheimer Disease , Black People , Genetic Predisposition to Disease , Genome-Wide Association Study , Linkage Disequilibrium , Polymorphism, Single Nucleotide , Humans , Alzheimer Disease/genetics , Alzheimer Disease/ethnology , Genetic Predisposition to Disease/genetics , Black People/genetics , Polymorphism, Single Nucleotide/genetics , Female , Male , Aged
9.
Cell Host Microbe ; 32(6): 837-851, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38870900

ABSTRACT

Antibiotic resistance (AMR) is a global public health threat, challenging the effectiveness of antibiotics in combating bacterial infections. AMR also represents one of the most crucial survival traits evolved by bacteria. Antibiotics emerged hundreds of millions of years ago as advantageous secondary metabolites produced by microbes. Consequently, AMR is equally ancient and hardwired into the genetic fabric of bacteria. Human use of antibiotics for disease treatment has created selection pressure that spurs the evolution of new resistance mechanisms and the mobilization of existing ones through bacterial populations in the environment, animals, and humans. This integrated web of resistance elements is genetically complex and mechanistically diverse. Addressing this mode of bacterial survival requires innovation and investment to ensure continued use of antibiotics in the future. Strategies ranging from developing new therapies to applying artificial intelligence in monitoring AMR and discovering new drugs are being applied to manage the growing AMR crisis.


Subject(s)
Anti-Bacterial Agents , Bacteria , Bacterial Infections , Drug Resistance, Bacterial , Public Health , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria/drug effects , Bacteria/genetics , Bacteria/metabolism , Humans , Animals , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , Drug Resistance, Microbial
10.
Pediatr Blood Cancer ; 71(9): e31143, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38924670

ABSTRACT

ChatGPT and other artificial intelligence (AI) systems have captivated the attention of healthcare providers and researchers for their potential to improve care processes and outcomes. While these technologies hold promise to automate processes, increase efficiency, and reduce cognitive burden, their use also carries risks. In this commentary, we review basic concepts of AI, outline some of the capabilities and limitations of currently available tools, discuss current and future applications in pediatric hematology/oncology, and provide an evaluation and implementation framework that can be used by pediatric hematologist/oncologists considering the use of AI in clinical practice.


Subject(s)
Artificial Intelligence , Hematology , Medical Oncology , Humans , Medical Oncology/methods , Child , Pediatrics/methods
11.
J Neuroimmune Pharmacol ; 19(1): 25, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38789639

ABSTRACT

Based on emerging evidence on the role for specific single-nucleotide variants (SNVs) in EIF2AK3 encoding the integrated stress response kinase PERK, in neurodegeneration, we assessed the association of EIF2AK3 SNVs with neurocognitive performance in people with HIV (PWH) using a candidate gene approach. This retrospective study included the CHARTER cohort participants, excluding those with severe neuropsychiatric comorbidities. Genome-wide data previously obtained for 1047 participants and targeted sequencing of 992 participants with available genomic DNA were utilized to interrogate the association of three noncoding and three coding EIF2AK3 SNVs with the continuous global deficit score (GDS) and global neurocognitive impairment (NCI; GDS ≥ 0.5) using univariable and multivariable methods, with demographic, disease-associated, and treatment characteristics as covariates. The cohort characteristics were as follows: median age, 43.1 years; females, 22.8%; European ancestry, 41%; median CD4 + T cell counts, 175/µL (nadir) and 428/µL (current). At first assessment, 70.5% used ART and 68.3% of these had plasma HIV RNA levels ≤ 200 copies/mL. All three noncoding EIF2AK3 SNVs were associated with GDS and NCI (all p < 0.05). Additionally, 30.9%, 30.9%, and 41.2% of participants had at least one risk allele for the coding SNVs rs1805165 (G), rs867529 (G), and rs13045 (A), respectively. Homozygosity for all three coding SNVs was associated with significantly worse GDS (p < 0.001) and more NCI (p < 0.001). By multivariable analysis, the rs13045 A risk allele, current ART use, and Beck Depression Inventory-II value > 13 were independently associated with GDS and NCI (p < 0.001) whereas the other two coding SNVs did not significantly correlate with GDS or NCI after including rs13045 in the model. The coding EIF2AK3 SNVs were associated with worse performance in executive functioning, motor functioning, learning, and verbal fluency. Coding and non-coding SNVs of EIF2AK3 were associated with global NC and domain-specific performance. The effects were small-to-medium in size but present in multivariable analyses, raising the possibility of specific SNVs in EIF2AK3 as an important component of genetic vulnerability to neurocognitive complications in PWH.


Subject(s)
HIV Infections , Polymorphism, Single Nucleotide , eIF-2 Kinase , Adult , Female , Humans , Male , Middle Aged , Cognitive Dysfunction/genetics , Cohort Studies , eIF-2 Kinase/genetics , HIV Infections/genetics , HIV Infections/complications , HIV Infections/psychology , Polymorphism, Single Nucleotide/genetics , Retrospective Studies
12.
J Alzheimers Dis Rep ; 8(1): 575-587, 2024.
Article in English | MEDLINE | ID: mdl-38746629

ABSTRACT

Background: Mitochondrial DNA (mtDNA) is a double-stranded circular DNA and has multiple copies in each cell. Excess heteroplasmy, the coexistence of distinct variants in copies of mtDNA within a cell, may lead to mitochondrial impairments. Accurate determination of heteroplasmy in whole-genome sequencing (WGS) data has posed a significant challenge because mitochondria carrying heteroplasmic variants cannot be distinguished during library preparation. Moreover, sequencing errors, contamination, and nuclear mtDNA segments can reduce the accuracy of heteroplasmic variant calling. Objective: To efficiently and accurately call mtDNA homoplasmic and heteroplasmic variants from the large-scale WGS data generated from the Alzheimer's Disease Sequencing Project (ADSP), and test their association with Alzheimer's disease (AD). Methods: In this study, we present MitoH3-a comprehensive computational pipeline for calling mtDNA homoplasmic and heteroplasmic variants and inferring haplogroups in the ADSP WGS data. We first applied MitoH3 to 45 technical replicates from 6 subjects to define a threshold for detecting heteroplasmic variants. Then using the threshold of 5% ≤variant allele fraction≤95%, we further applied MitoH3 to call heteroplasmic variants from a total of 16,113 DNA samples with 6,742 samples from cognitively normal controls and 6,183 from AD cases. Results: This pipeline is available through the Singularity container engine. For 4,311 heteroplasmic variants identified from 16,113 samples, no significant variant count difference was observed between AD cases and controls. Conclusions: Our streamlined pipeline, MitoH3, enables computationally efficient and accurate analysis of a large number of samples.

13.
Nat Commun ; 15(1): 4036, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740750

ABSTRACT

Microbial Ni2+ homeostasis underpins the virulence of several clinical pathogens. Ni2+ is an essential cofactor in urease and [NiFe]-hydrogenases involved in colonization and persistence. Many microbes produce metallophores to sequester metals necessary for their metabolism and starve competing neighboring organisms. The fungal metallophore aspergillomarasmine A (AMA) shows narrow specificity for Zn2+, Ni2+, and Co2+. Here, we show that this specificity allows AMA to block the uptake of Ni2+ and attenuate bacterial Ni-dependent enzymes, offering a potential strategy for reducing virulence. Bacterial exposure to AMA perturbs H2 metabolism, ureolysis, struvite crystallization, and biofilm formation and shows efficacy in a Galleria mellonella animal infection model. The inhibition of Ni-dependent enzymes was aided by Zn2+, which complexes with AMA and competes with the native nickelophore for the uptake of Ni2+. Biochemical analyses demonstrated high-affinity binding of AMA-metal complexes to NikA, the periplasmic substrate-binding protein of the Ni2+ uptake system. Structural examination of NikA in complex with Ni-AMA revealed that the coordination geometry of Ni-AMA mimics the native ligand, Ni-(L-His)2, providing a structural basis for binding AMA-metal complexes. Structure-activity relationship studies of AMA identified regions of the molecule that improve NikA affinity and offer potential routes for further developing this compound as an anti-virulence agent.


Subject(s)
Bacterial Proteins , Nickel , Nickel/metabolism , Nickel/chemistry , Animals , Virulence/drug effects , Bacterial Proteins/metabolism , Biofilms/drug effects , Zinc/metabolism , Zinc/chemistry , Moths/microbiology , Urease/metabolism , Urease/antagonists & inhibitors , Biological Transport
14.
Acta Neuropathol ; 147(1): 55, 2024 03 12.
Article in English | MEDLINE | ID: mdl-38472475

ABSTRACT

Inclusions comprised of microtubule-associated protein tau (tau) are implicated in a group of neurodegenerative diseases, collectively known as tauopathies, that include Alzheimer's disease (AD). The spreading of misfolded tau "seeds" along neuronal networks is thought to play a crucial role in the progression of tau pathology. Consequently, restricting the release or uptake of tau seeds may inhibit the spread of tau pathology and potentially halt the advancement of the disease. Previous studies have demonstrated that the Mammalian Suppressor of Tauopathy 2 (MSUT2), an RNA binding protein, modulates tau pathogenesis in a transgenic mouse model. In this study, we investigated the impact of MSUT2 on tau pathogenesis using tau seeding models. Our findings indicate that the loss of MSUT2 mitigates human tau seed-induced pathology in neuron cultures and mouse models. In addition, MSUT2 regulates many gene transcripts, including the Adenosine Receptor 1 (A1AR), and we show that down regulation or inhibition of A1AR modulates the activity of the "ArfGAP with SH3 Domain, Ankyrin Repeat, and PH Domain 1 protein" (ASAP1), thereby influencing the internalization of pathogenic tau seeds into neurons resulting in reduction of tau pathology.


Subject(s)
Alzheimer Disease , Tauopathies , Mice , Humans , Animals , Brain/pathology , tau Proteins/metabolism , Tauopathies/pathology , Alzheimer Disease/pathology , Neurons/pathology , Mice, Transgenic , Mammals/metabolism , Adaptor Proteins, Signal Transducing/metabolism
15.
Urology ; 187: 125-130, 2024 May.
Article in English | MEDLINE | ID: mdl-38432430

ABSTRACT

OBJECTIVE: To create a society position statement on common adjunct penile prosthesis (PP) procedures. While the Medicare Current Procedural Terminology code book lists descriptions of procedures, it is very brief and lacks detail in the small subspecialty of prosthetic urology. At educational/research meetings, wide variation was found in how experts in prosthetic urology code the same procedures, and need for a standardized format in billing common ancillary surgery was voiced. METHODS: A subcommittee within the Society of Urologic Prosthetic Surgeons developed a survey assessing coding options for several procedures commonly adjunct to PP placement, which was distributed in the fall of 2022. The results of the survey were used to develop consensus statements on coding adjunct PP procedures; statements were distributed among society membership and meetings for approval. RESULTS: Thirty members replied to the survey; demographics were obtained as follows: 73% were trained in a fellowship, 50% identified as university/academic practitioners, and 50% in community/private practice; and 63% respondents place more than 50 implants annually. Only 1 of the 30 respondents stated confidence in coding for these ancillary procedures. Specifically, differences in how to code curvature correction procedures were observed throughout the survey results. CONCLUSION: Only 1 in 30 prosthetic urologists expressed confidence in coding and billing of adjunct PP procedures, further confirming the need for a society position statement. Therefore, we generated a consensus society position statement on common surgeries that are adjunct to PP placement.


Subject(s)
Penile Implantation , Penile Prosthesis , Societies, Medical , Urology , Male , Humans , United States , Clinical Coding/standards , Surveys and Questionnaires
16.
Nanotechnology ; 35(36)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38537254

ABSTRACT

We investigate the photon statistics of the light emitted by single self-assembled hybrid gold-CdSe/CdS/CdZnS colloidal nanocrystal supraparticles through the detailed analysis of the intensity autocorrelation functiong(2)(τ). We first reveal that, despite the large number of nanocrystals involved in the supraparticle emission, antibunching can be observed. We then present a model based on non-coherent Förster energy transfer and Auger recombination that well captures photon antibunching. Finally, we demonstrate that some supraparticles exhibit a bunching effect at short time scales corresponding to coherent collective emission.

17.
Obes Surg ; 34(4): 1224-1231, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38379059

ABSTRACT

BACKGROUND: Non-alcoholic steatohepatitis (NASH) is one of the leading indications for liver transplantation (LT) in the United States. As with the current obesity epidemic, the incidence of NASH continues to rise. However, the impact of broad utilization of bariatric surgery (BS) for patients with NASH is unknown, particularly in regard to mitigating the need for LT. METHODS: Markov decision analysis was performed to simulate the lives of 20,000 patients with obesity and concomitant NASH who were deemed ineligible to be waitlisted for LT unless they achieved a body mass index (BMI) < 35 kg/m2. Life expectancy following medical weight management (MWM) and sleeve gastrectomy (SG) were estimated. Base case patients were defined as having NASH without fibrosis and a pre-intervention BMI of 45 kg/m2. Sensitivity analysis of initial BMI was performed. RESULTS: Simulated base case analysis patients who underwent SG gained 14.3 years of life compared to patients who underwent MWM. One year after weight loss intervention, 9% of simulated MWM patients required LT compared to only 5% of SG patients. Survival benefit for SG was observed above a BMI of 32.2 kg/m2. CONCLUSION: In this predictive model of 20,000 patients with obesity and concomitant NASH, surgical weight loss is associated with a reduction in the progression of NASH, thereby reducing the need for LT. A reduced BMI threshold of 32 kg/m2 for BS may offer survival benefit for patients with obesity and NASH.


Subject(s)
Liver Transplantation , Non-alcoholic Fatty Liver Disease , Obesity, Morbid , Humans , Non-alcoholic Fatty Liver Disease/complications , Obesity, Morbid/surgery , Obesity/surgery , Weight Loss , Gastrectomy , Treatment Outcome
18.
Cell Chem Biol ; 31(4): 760-775.e17, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38402621

ABSTRACT

Candida species are among the most prevalent causes of systemic fungal infections, which account for ∼1.5 million annual fatalities. Here, we build on a compound screen that identified the molecule N-pyrimidinyl-ß-thiophenylacrylamide (NP-BTA), which strongly inhibits Candida albicans growth. NP-BTA was hypothesized to target C. albicans glutaminyl-tRNA synthetase, Gln4. Here, we confirmed through in vitro amino-acylation assays NP-BTA is a potent inhibitor of Gln4, and we defined how NP-BTA arrests Gln4's transferase activity using co-crystallography. This analysis also uncovered Met496 as a critical residue for the compound's species-selective target engagement and potency. Structure-activity relationship (SAR) studies demonstrated the NP-BTA scaffold is subject to oxidative and non-oxidative metabolism, making it unsuitable for systemic administration. In a mouse dermatomycosis model, however, topical application of the compound provided significant therapeutic benefit. This work expands the repertoire of antifungal protein synthesis target mechanisms and provides a path to develop Gln4 inhibitors.


Subject(s)
Amino Acyl-tRNA Synthetases , Antifungal Agents , Animals , Mice , Antifungal Agents/pharmacology , Amino Acyl-tRNA Synthetases/genetics , Candida albicans , Structure-Activity Relationship
19.
Life Sci Alliance ; 7(5)2024 May.
Article in English | MEDLINE | ID: mdl-38418088

ABSTRACT

Detecting structural variants (SVs) in whole-genome sequencing poses significant challenges. We present a protocol for variant calling, merging, genotyping, sensitivity analysis, and laboratory validation for generating a high-quality SV call set in whole-genome sequencing from the Alzheimer's Disease Sequencing Project comprising 578 individuals from 111 families. Employing two complementary pipelines, Scalpel and Parliament, for SV/indel calling, we assessed sensitivity through sample replicates (N = 9) with in silico variant spike-ins. We developed a novel metric, D-score, to evaluate caller specificity for deletions. The accuracy of deletions was evaluated by Sanger sequencing. We generated a high-quality call set of 152,301 deletions of diverse sizes. Sanger sequencing validated 114 of 146 detected deletions (78.1%). Scalpel excelled in accuracy for deletions ≤100 bp, whereas Parliament was optimal for deletions >900 bp. Overall, 83.0% and 72.5% of calls by Scalpel and Parliament were validated, respectively, including all 11 deletions called by both Parliament and Scalpel between 101 and 900 bp. Our flexible protocol successfully generated a high-quality deletion call set and a truth set of Sanger sequencing-validated deletions with precise breakpoints spanning 1-17,000 bp.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/genetics , Whole Genome Sequencing/methods
20.
bioRxiv ; 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38405782

ABSTRACT

India has been underrepresented in whole genome sequencing studies. We generated 2,762 high coverage genomes from India-including individuals from most geographic regions, speakers of all major languages, and tribal and caste groups-providing a comprehensive survey of genetic variation in India. With these data, we reconstruct the evolutionary history of India through space and time at fine scales. We show that most Indians derive ancestry from three ancestral groups related to ancient Iranian farmers, Eurasian Steppe pastoralists and South Asian hunter-gatherers. We uncover a common source of Iranian-related ancestry from early Neolithic cultures of Central Asia into the ancestors of Ancestral South Indians (ASI), Ancestral North Indians (ANI), Austro-asiatic-related and East Asian-related groups in India. Following these admixtures, India experienced a major demographic shift towards endogamy, resulting in extensive homozygosity and identity-by-descent sharing among individuals. At deep time scales, Indians derive around 1-2% of their ancestry from gene flow from archaic hominins, Neanderthals and Denisovans. By assembling the surviving fragments of archaic ancestry in modern Indians, we recover ~1.5 Gb (or 50%) of the introgressing Neanderthal and ~0.6 Gb (or 20%) of the introgressing Denisovan genomes, more than any other previous archaic ancestry study. Moreover, Indians have the largest variation in Neanderthal ancestry, as well as the highest amount of population-specific Neanderthal segments among worldwide groups. Finally, we demonstrate that most of the genetic variation in Indians stems from a single major migration out of Africa that occurred around 50,000 years ago, with minimal contribution from earlier migration waves. Together, these analyses provide a detailed view of the population history of India and underscore the value of expanding genomic surveys to diverse groups outside Europe.

SELECTION OF CITATIONS
SEARCH DETAIL