Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Parasitology ; 142(6): 839-48, 2015 May.
Article in English | MEDLINE | ID: mdl-25711627

ABSTRACT

Hosts strongly influence parasite fitness. However, it is challenging to disentangle host effects on genetic vs plasticity-driven traits of parasites, since parasites can evolve quickly. It remains especially difficult to determine the causes and magnitude of parasite plasticity. In successive generations, parasites may respond plastically to better infect their current type of host, or hosts may produce generally 'good' or 'bad' quality parasites. Here, we characterized parasite plasticity by taking advantage of a system in which the parasite (the yeast Metschnikowia bicuspidata, which infects Daphnia) has no detectable heritable variation, preventing rapid evolution. In experimental infection assays, we found an effect of rearing host genotype on parasite infectivity, where host genotypes produced overall high or low quality parasite spores. Additionally, these plastically induced differences were gained or lost in just a single host generation. Together, these results demonstrate phenotypic plasticity in infectivity driven by the within-host rearing environment. Such plasticity is rarely investigated in parasites, but could shape epidemiologically important traits.


Subject(s)
Adaptation, Physiological/physiology , Daphnia/microbiology , Genetic Variation , Metschnikowia/genetics , Metschnikowia/physiology , Animals , Host-Pathogen Interactions , Molecular Sequence Data , Polymerase Chain Reaction
2.
Mol Ecol ; 23(6): 1333-1347, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24384031

ABSTRACT

Many organisms have intimate associations with beneficial microbes acquired from the environment. These host-symbiont associations can be specific and stable, but they are prone to lower partner specificity and more partner-switching than vertically transmitted mutualisms. To investigate partner specificity in an environmentally acquired insect symbiosis, we used 16S rRNA gene and multilocus sequencing to survey the bacterial population in the bacteria-harbouring organ (crypts) of 49 individuals across four sympatric broad-headed bug species (Alydus calcaratus, A. conspersus, A. tomentosus and Megalotomus quinquespinosus). Similar to other insect-bacteria associations, Burkholderia spp. were the most common residents of the crypts in all four insect species (77.2% of recovered sequences). Burkholderia presence was associated with prolonged survival to adulthood in A. tomentosus, suggesting a beneficial role of these specialized associations. Burkholderia were also found in environmental reservoirs in the insects' habitat, which may facilitate acquisition by insects by increasing Burkholderia-insect encounters. Symbiont establishment could also be facilitated by resistance to insect defences; zone of inhibition assays demonstrated that Burkholderia and other bacteria isolated from crypts are resistant to insect defences that limit growth of Escherichia coli. Alternatively, the insects' defences may not efficiently kill a broad range of bacteria. Although the symbiosis is targeted to Burkholderia, the insects' crypts housed other bacteria, including non-Burkholderiaceae species. There is no significant effect of host insect species on Burkholderia distribution, suggesting a lack of strong partner specificity at finer scales. The presence of frequent partner-switching between sympatric insects and their symbionts likely prevents tight co-evolutionary dynamics.


Subject(s)
Burkholderia/classification , Heteroptera/microbiology , Symbiosis , Sympatry , Animals , Bacterial Typing Techniques , Burkholderia/genetics , Burkholderia/isolation & purification , DNA, Bacterial/genetics , Digestive System/microbiology , Ecosystem , Molecular Sequence Data , Multilocus Sequence Typing , Phylogeny , RNA, Ribosomal, 16S/genetics , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL