Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 11136, 2024 05 15.
Article in English | MEDLINE | ID: mdl-38750119

ABSTRACT

Gradual elevation of the periosteum from the original bone surface, based on the principle of distraction osteogenesis, induces endogenous hard and soft tissue formation. This study aimed to assess the impact of alternating protocols of activation with relaxation (periosteal pumping) on bone modeling and remodeling. One hundred and sixty-two adult male Wistar rats were used in this study. Four test groups with different pumping protocols were created based on the relaxation applied. Two control groups underwent an activation period without relaxation or only a single activation. One group was sham-operated. Periosteal pumping without period of activation induced gene expression in bone and bone remodeling, and following activation period enhanced bone modeling. Four test groups and control group with activation period equaled the values of bone modeling at the end-consolidation period, showing significant downregulation of Sost in the bone and periosteum compared to that in the sham group (p < 0.001 and p < 0.001, respectively). When all test groups were pooled together, plate elevation from the bony surface increased bone remodeling on day 45 of the observation period (p = 0.003). Furthermore, bone modeling was significantly affected by plate elevation on days 17 and 45 (p = 0.047 and p = 0.005, respectively) and by pumping protocol on day 31 (p = 0.042). Periosteal pumping was beneficial for increasing bone repair when the periosteum remained in contact with the underlaying bony surface during the manipulation period. Following periosteal elevation, periosteal pumping accelerated bone formation from the bony surface by the modeling process.


Subject(s)
Bone Remodeling , Periosteum , Rats, Wistar , Animals , Periosteum/metabolism , Male , Bone Remodeling/physiology , Rats , Osteogenesis/physiology , Osteogenesis, Distraction/methods
2.
RMD Open ; 9(1)2023 02.
Article in English | MEDLINE | ID: mdl-36810185

ABSTRACT

OBJECTIVE: Low-grade inflammation plays a pivotal role in osteoarthritis (OA) through exposure to reactive oxygen species (ROS). In chondrocytes, NADPH oxidase 4 (NOX4) is one of the major ROS producers. In this study, we evaluated the role of NOX4 on joint homoeostasis after destabilisation of the medial meniscus (DMM) in mice. METHODS: Experimental OA was simulated on cartilage explants using interleukin-1ß (IL-1ß) and induced by DMM in wild-type (WT) and NOX4 knockout (NOX4-/-) mice. We evaluated NOX4 expression, inflammation, cartilage metabolism and oxidative stress by immunohistochemistry. Bone phenotype was also determined by micro-CT and histomorphometry. RESULTS: Whole body NOX4 deletion attenuated experimental OA in mice, with a significant reduction of the OARSI score at 8 weeks. DMM increased total subchondral bone plate (SB.Th), epiphysial trabecular thicknesses (Tb.Th) and bone volume fraction (BV/TV) in both NOX4-/- and wild-type (WT) mice. Interestingly, DDM decreased total connectivity density (Conn.Dens) and increased medial BV/TV and Tb.Th only in WT mice. Ex vivo, NOX4 deficiency increased aggrecan (AGG) expression and decreased matrix metalloproteinase 13 (MMP13) and collagen type I (COL1) expression. IL-1ß increased NOX4 and 8-hydroxy-2'-deoxyguanosine (8-OHdG) expression in WT cartilage explants but not in NOX4-/-. In vivo, absence of NOX4 increased anabolism and decreased catabolism after DMM. Finally, NOX4 deletion decreased synovitis score, 8-OHdG and F4/80 staining following DMM. CONCLUSION: NOX4 deficiency restores cartilage homoeostasis, inhibits oxidative stress, inflammation and delays OA progression after DMM in mice. These findings suggest that NOX4 represent a potential target to counteract for OA treatment.


Subject(s)
NADPH Oxidase 4 , Osteoarthritis , Animals , Mice , Disease Models, Animal , Inflammation , NADPH Oxidase 4/deficiency , NADPH Oxidase 4/genetics , Osteoarthritis/genetics , Reactive Oxygen Species , Mice, Knockout
3.
Ann Plast Surg ; 89(2): 218-224, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35276708

ABSTRACT

PURPOSE: Gradual elevation of periosteum from the bone surface is known to promote the adaptation of soft tissues and the formation of hard tissues. The aim of our study was to estimate the benefit of periosteal distraction osteogenesis (PDO) on de novo bone formation in a rat model. MATERIALS AND METHODS: After device placement, animals were allowed for a latency period of 7 days. Animals in the PDO group were subjected to distraction at a rate of 0.1 mm/d for 10 days. In the periosteal pumping (PP) group, the animals were subjected to distraction at a rate of 0.1 mm/d. The direction of distraction was alternated every 2 days. The animals were euthanized at 17, 31, and 45 days after surgery, and the samples were analyzed histologically and by microcomputed tomography. RESULTS: In both groups, the new bone was characterized as primary woven bone that was located at the leading edge of bone apposition. Bone volumes significantly increased throughout the observation period both in the PP group ( P = 0.018) and in the PDO group ( P < 0.001). The new bone was denser and more mature in the PP group than in the PDO group, and the difference was significant at the 31-day time point ( P = 0.024). However, the volume of the new bone was higher in the PDO at the 45-day time point ( P < 0.001). CONCLUSIONS: We propose that the PP may be applied to enhance the osteogenic capacity of periosteum without plate elevation. Because this is only a proof-of-principle study, the alternated protocol of periosteal distraction warrants evaluation in the future studies.


Subject(s)
Osteogenesis, Distraction , Periosteum , Animals , Feasibility Studies , Osteogenesis , Osteogenesis, Distraction/methods , Periosteum/surgery , Rats , Skull/surgery , X-Ray Microtomography
4.
J Bone Miner Res ; 36(2): 385-399, 2021 02.
Article in English | MEDLINE | ID: mdl-33049076

ABSTRACT

Sclerostin (Scl) antibodies (Scl-Ab) potently stimulate bone formation, but these effects are transient. Whether the rapid inhibition of Scl-Ab anabolic effects is due to a loss of bone cells' capacity to form new bone or to a mechanostatic downregulation of Wnt signaling once bone strength exceeds stress remains unclear. We hypothesized that bone formation under Scl-Ab could be reactivated by increasing the dose of Scl-Ab and/or by adding mechanical stimuli, and investigated the molecular mechanisms involved in this response, in particular the role of periostin (Postn), a co-activator of the Wnt pathway in bone. For this purpose, C57Bl/6, Postn-/- and Postn+/+ mice were treated with vehicle or Scl-Ab (50 to 100 mg/kg/wk) for various durations and subsequently subjected to tibia axial compressive loading. In wild-type (WT) mice, Scl-Ab anabolic effects peaked between 2 and 4 weeks and declined thereafter, with no further increase in bone volume and strength between 7 and 10 weeks. Doubling the dose of Scl-Ab did not rescue the decline in bone formation. In contrast, mechanical stimulation was able to restore cortical bone formation concomitantly to Scl-Ab treatment at both doses. Several Wnt inhibitors, including Dkk1, Sost, and Twist1, were upregulated, whereas Postn was markedly downregulated by 2 to 4 weeks of Scl-Ab. Mechanical loading specifically upregulated Postn gene expression. In turn, Scl-Ab effects on cortical bone were more rapidly downregulated in Postn-/- mice. These results indicate that bone formation is not exhausted by Scl-Ab but inhibited by a mechanically driven downregulation of Wnt signaling. Hence, increasing mechanical loads restores bone formation on cortical surfaces, in parallel with Postn upregulation. © 2020 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Antibodies, Neutralizing , Osteogenesis , Animals , Bone and Bones , Cortical Bone , Mice , Wnt Signaling Pathway
5.
PLoS One ; 14(1): e0209079, 2019.
Article in English | MEDLINE | ID: mdl-30601851

ABSTRACT

The lacuno-canalicular network (LCN) hosting the osteocytes in bone tissue represents a biological signature of the mechanotransduction activity in response to external biomechanical loading. Using third-harmonic generation (THG) microscopy with sub-micrometer resolution, we investigate the impact of microgravity on the 3D LCN structure in mice following space flight. A specific analytical procedure to extract the LCN characteristics from THG images is described for ex vivo studies of bone sections. The analysis conducted in different anatomical quadrants of femoral cortical bone didn't reveal any statistical differences between the control, habitat control and flight groups, suggesting that the LCN connectivity is not affected by one month space flight. However, significant variations are systematically observed within each sample. We show that our current lack of understanding of the extent of the LCN heterogeneity at the organ level hinders the interpretation of such investigations based on a limited number of samples and we discuss the implications for future biomedical studies.


Subject(s)
Hypogravity , Microscopy, Confocal/methods , Animals , Ecosystem , Male , Mice , Mice, Inbred C57BL , Weightlessness
6.
FASEB J ; 33(3): 3772-3783, 2019 03.
Article in English | MEDLINE | ID: mdl-30521760

ABSTRACT

Bone loss and immune dysregulation are among the main adverse outcomes of spaceflight challenging astronauts' health and safety. However, consequences on B-cell development and responses are still under-investigated. To fill this gap, we used advanced proteomics analysis of femur bone and marrow to compare mice flown for 1 mo on board the BION-M1 biosatellite, followed or not by 1 wk of recovery on Earth, to control mice kept on Earth. Our data revealed an adverse effect on B lymphopoiesis 1 wk after landing. This phenomenon was associated with a 41% reduction of B cells in the spleen. These reductions may contribute to explain increased susceptibility to infection even if our data suggest that flown animals can mount a humoral immune response. Future studies should investigate the quality/efficiency of produced antibodies and whether longer missions worsen these immune alterations.-Tascher, G., Gerbaix, M., Maes, P., Chazarin, B., Ghislin, S., Antropova, E., Vassilieva, G., Ouzren-Zarhloul, N., Gauquelin-Koch, G., Vico, L., Frippiat, J.-P., Bertile, F. Analysis of femurs from mice embarked on board BION-M1 biosatellite reveals a decrease in immune cell development, including B cells, after 1 wk of recovery on Earth.


Subject(s)
B-Lymphocytes/immunology , B-Lymphocytes/physiology , Femur/immunology , Femur/physiology , Animals , Bone Marrow/immunology , Bone Marrow/physiology , Bone Marrow Cells/immunology , Bone Marrow Cells/physiology , Cell Differentiation/immunology , Cell Differentiation/physiology , Male , Mice , Mice, Inbred C57BL , Space Flight , Spacecraft , Spleen/immunology , Spleen/physiology , Weightlessness
7.
Rev Med Suisse ; 14(626): 2012-2017, 2018 Nov 07.
Article in French | MEDLINE | ID: mdl-30422421

ABSTRACT

The management of osteoporosis in patients with mild to moderate chronic kidney disease (CKD) can be established as in general population. In severe or terminal CKD, bone densitometry is indicated. Bone-specific alkaline phosphatase is considered a useful marker for distinguishing among the histologic types of renal osteodystrophy. In ambiguous cases, bone biopsy together with quantitative histomorphometry will be necessary. As far as the treatment is concerned, the bisphosphonates, which had been avoided due to their renal excretion as well as the official warnings against using them in case of renal clearance lower than 30 ml/min, seem to be effective even in advanced stages of renal disease. There are limited data, though, regarding the management of osteoporosis in terminal stages of CKD.


La prise en charge des patients en insuffisance rénale légère à modérée peut être calquée sur celle de la population générale. En cas d'insuffisance rénale sévère ou terminale, la densitométrie osseuse reste indiquée. Le type d'ostéodystrophie rénale sera présumé à partir du niveau de phosphatase alcaline osseuse. Dans les cas équivoques, une biopsie osseuse avec histomorphométrie quantitative sera nécessaire. Quant au traitement, les bisphosphonates, longtemps mis à l'écart vu leur élimination rénale et la contre-indication de principe existant pour la plupart d'entre eux pour des niveaux de clairance inférieure à 30 ml/min, sont efficaces même à des stades avancés de l'insuffisance rénale. La prise en charge de l'ostéoporose chez l'insuffisant rénal terminal reste encore un domaine avec des données limitées.


Subject(s)
Chronic Kidney Disease-Mineral and Bone Disorder , Kidney Failure, Chronic , Osteoporosis , Renal Insufficiency, Chronic , Biopsy , Bone and Bones/pathology , Chronic Kidney Disease-Mineral and Bone Disorder/diagnosis , Chronic Kidney Disease-Mineral and Bone Disorder/therapy , Humans , Kidney Failure, Chronic/complications , Osteoporosis/diagnosis , Osteoporosis/etiology , Osteoporosis/therapy
8.
Front Physiol ; 9: 746, 2018.
Article in English | MEDLINE | ID: mdl-29988558

ABSTRACT

Spaceflight induces bone alterations with site-specific rates of bone loss according to the weight-bearing function of the bone. For the first time, this study aimed to characterize bone microarchitecture and density alterations of three ankle bones (calcaneus, navicular, and talus) of mice after spaceflight and to evaluate the impact of 8 days of Earth reambulation. Ten C57BL/6N male 4-month-old mice flew on the Bion-M1 biosatellite for 1 month; half were euthanized within 24-h of return and half after 8-days recovery on Earth. Bone microarchitecture and quality was assessed by microtomography (µCT). Whole calcaneus bone volume fraction decreased in Flight group (-6.4%, p < 0.05), and worsened in the Recovery group (-11.08%, p < 0.01), when compared to Control group. Navicular and talus trabecular bone volume fraction showed trends toward decrease in Flight and differences reached statistical significance in Recovery group (-8.16%; -8.87%, respectively; p < 0.05) when compared to Control group. At calcaneus, cortical thickness decreased in Recovery vs. Control groups (-11.69%; p < 0.01). Bone surface area, reflecting periosteal bone erosion, significantly increased in all bone sites analyzed. Qualitative analyses of 3-D bone reconstruction revealed local sites of cortical thinning and bone erosion, predominantly at articulations, muscle insertions, and ground contact bone sites. Overall, spaceflight-induced bone loss in ankle bones was site and compartment specific whilst the tissue mineral density of the remaining bone was preserved. Eight days after landing, bone status worsened as compared to immediate return.

9.
Sci Rep ; 8(1): 3492, 2018 02 22.
Article in English | MEDLINE | ID: mdl-29472591

ABSTRACT

Periarticular bone loss in rheumatoid arthritis (RA) is considered to be mainly related to synovial inflammation. However, strong bone loss has also described at the time of arthritis onset. Recently, a paradoxical exacerbation of joint damage was described when blocking sclerostin in various arthritis models. Thus, we aimed to determine kinetics of bone loss and its mechanisms in the adjuvant induced arthritis (AIA) rat model of RA. AIA was induced (n = 35) or not (n = 35) at day 0. In addition to well-known arthritis at day 12, we showed with 3D-imaging and histomorphometry that bone microstructural alterations occurred early from day 8 post-induction, characterized by cortical porosity and trabecular bone loss. Active osteoclastic surfaces were increased from day 8 with RANKL upregulation. More surprisingly SOST and DKK1 were overexpressed from day 6 and followed by a dramatic decrease in bone formation from day 8. At the time of arthritis onset, SOST and DKK1 returned to control values, but frizzled related protein 1 (SFRP1), proinflammatory cytokines, and MMPs started to increase. Bone alterations before arthritis onset reinforce the hypothesis of an early bone involvement in arthritis. Kinetics of osteocyte markers expression should be considered to refine Wnt inhibitor treatment strategies.


Subject(s)
Arthritis, Experimental/genetics , Arthritis, Rheumatoid/genetics , Bone Morphogenetic Proteins/genetics , Genetic Markers/genetics , Intercellular Signaling Peptides and Proteins/genetics , Osteogenesis/genetics , Animals , Arthritis, Experimental/physiopathology , Arthritis, Rheumatoid/physiopathology , Disease Models, Animal , Female , Gene Expression Regulation, Developmental/genetics , Humans , Membrane Proteins/genetics , Osteoclasts/metabolism , Osteocytes/metabolism , RANK Ligand/genetics , Rats
11.
Sci Rep ; 7(1): 2659, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28572612

ABSTRACT

The weightless environment during spaceflight induces site-specific bone loss. The 30-day Bion-M1 mission offered a unique opportunity to characterize the skeletal changes after spaceflight and an 8-day recovery period in mature male C57/BL6 mice. In the femur metaphysis, spaceflight decreased the trabecular bone volume (-64% vs. Habitat Control), dramatically increased the bone resorption (+140% vs. Habitat Control) and induced marrow adiposity invasion. At the diaphysis, cortical thinning associated with periosteal resorption was observed. In the Flight animal group, the osteocyte lacunae displayed a reduced volume and a more spherical shape (synchrotron radiation analyses), and empty lacunae were highly increased (+344% vs. Habitat Control). Tissue-level mechanical cortical properties (i.e., hardness and modulus) were locally decreased by spaceflight, whereas the mineral characteristics and collagen maturity were unaffected. In the vertebrae, spaceflight decreased the overall bone volume and altered the modulus in the periphery of the trabecular struts. Despite normalized osteoclastic activity and an increased osteoblast number, bone recovery was not observed 8 days after landing. In conclusion, spaceflight induces osteocyte death, which may trigger bone resorption and result in bone mass and microstructural deterioration. Moreover, osteocyte cell death, lacunae mineralization and fatty marrow, which are hallmarks of ageing, may impede tissue maintenance and repair.


Subject(s)
Bone and Bones/pathology , Bone and Bones/physiopathology , Osteocytes/pathology , Osteocytes/physiology , Space Flight , Weightlessness/adverse effects , Animals , Biomechanical Phenomena , Bone Density , Bone Resorption/etiology , Femur/pathology , Femur/physiopathology , Male , Mice, Inbred C57BL , Spine/pathology , Spine/physiopathology
12.
J Bone Miner Res ; 32(10): 2010-2021, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28574653

ABSTRACT

Risk for premature osteoporosis is a major health concern in astronauts and cosmonauts; the reversibility of the bone lost at the weight-bearing bone sites is not established, although it is suspected to take longer than the mission length. The bone three-dimensional structure and strength that could be uniquely affected by weightlessness is currently unknown. Our objective is to evaluate bone mass, microarchitecture, and strength of weight-bearing and non-weight-bearing bone in 13 cosmonauts before and for 12 months after a 4-month to 6-month sojourn in the International Space Station (ISS). Standard and advanced evaluations of trabecular and cortical parameters were performed using high-resolution peripheral quantitative computed tomography. In particular, cortical analyses involved determination of the largest common volume of each successive individual scan to improve the precision of cortical porosity and density measurements. Bone resorption and formation serum markers, and markers reflecting osteocyte activity or periosteal metabolism (sclerostin, periostin) were evaluated. At the tibia, in addition to decreased bone mineral densities at cortical and trabecular compartments, a 4% decrease in cortical thickness and a 15% increase in cortical porosity were observed at landing. Cortical size and density subsequently recovered and serum periostin changes were associated with cortical recovery during the year after landing. However, tibial cortical porosity or trabecular bone failed to recover, resulting in compromised strength. The radius, preserved at landing, unexpectedly developed postflight fragility, from 3 months post-landing onward, particularly in its cortical structure. Remodeling markers, uncoupled in favor of bone resorption at landing, returned to preflight values within 6 months, then declined farther to lower than preflight values. Our findings highlight the need for specific protective measures not only during, but also after spaceflight, because of continuing uncertainties regarding skeletal recovery long after landing. © 2017 American Society for Bone and Mineral Research.


Subject(s)
Cancellous Bone/anatomy & histology , Cancellous Bone/physiopathology , Cortical Bone/anatomy & histology , Cortical Bone/physiopathology , Space Flight , Adult , Biomarkers/blood , Biomechanical Phenomena , Bone Density/physiology , Cancellous Bone/diagnostic imaging , Cortical Bone/diagnostic imaging , Humans , Middle Aged , Radius/anatomy & histology , Radius/diagnostic imaging , Radius/physiology , Tibia/anatomy & histology , Tibia/diagnostic imaging , Tibia/physiology , Tomography, X-Ray Computed , Walking , Weight-Bearing
13.
Nutr Res ; 36(3): 280-9, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26923515

ABSTRACT

Energy-dense food consumption and lack of physical activity are implicated in the development of the current obesity epidemic. The role of estrogen in adiposity and fuel partitioning is mediated mainly though the estrogen receptor α (ERα) isoform. We hypothesized that nutritional adaptation and exercise training, either individually or combined, could impact ERα expression in adipose tissue relative to glucose tolerance. Seventy-two Wistar rats were submitted to a high-fat, high-sucrose (HF-HS) diet for 16weeks. The first phase of our study was to investigate the effect of an HF-HS diet on whole-body glucose tolerance, as well as on body composition and ERα expression in different adipose tissues. Second, we investigated the effect of switching to a well-balanced diet, with or without exercise training for 8 weeks, on those same parameters. After the first part of this study, HF-HS-fed rats were fatter (8%) than control rats. Despite a decrease in glucose tolerance, ERα expression in adipose tissues was not significantly altered by an HF-HS diet. The return to a well-balanced diet significantly increased ERα expression in perirenal and epididymal adipose tissue, but there was no effect of diet or exercise training on whole-body glucose tolerance. The present findings suggest that diet is a powerful modulator of ERα expression in adipose tissue, as nutritional modulation after an HF-HS diet strongly affects ERα expression, particularly in perirenal and epididymal adipose tissue. However, ERα expression in adipose tissue does not appear to be associated with whole-body glucose tolerance.


Subject(s)
Adipose Tissue/metabolism , Diet, High-Fat , Estrogen Receptor alpha/metabolism , Physical Conditioning, Animal , Animals , Blood Glucose/metabolism , Body Composition , Dietary Fats/administration & dosage , Dietary Sucrose/administration & dosage , Estrogen Receptor alpha/genetics , Glucose Tolerance Test , Insulin/blood , Insulin Receptor Substrate Proteins/genetics , Insulin Receptor Substrate Proteins/metabolism , Leptin/blood , Male , Nitriles/blood , Rats , Rats, Wistar
14.
Calcif Tissue Int ; 99(1): 99-109, 2016 07.
Article in English | MEDLINE | ID: mdl-26945756

ABSTRACT

Bone fragility depends on bone mass, structure, and material properties, including damage. The relationship between bone turnover, fatigue damage, and the pattern and location of fractures, however, remains poorly understood. We examined these factors and their integrated effects on fracture strength and patterns in tibia. Adult male mice received RANKL (2 mg/kg/day), OPG-Fc (5 mg/kg 2×/week), or vehicle (Veh) 2 days prior to fatigue loading of one tibia by in vivo axial compression, with treatments continuing up to 28 more days. One day post fatigue, crack density was similarly increased in fatigued tibiae from all treatment groups. After 28 days, the RANKL group exhibited reduced bone mass and increased crack density, resulting in reduced bone strength, while the OPG-Fc group had greater bone mass and bone strength. Injury repair altered the pattern and location of fractures created by ex vivo destructive testing, with fractures occurring more proximally and obliquely relative to non-fatigued tibia. A similar pattern was observed in both non-fatigued and fatigued tibia of RANKL. In contrast, OPG-Fc prevented this fatigue-related shift in fracture pattern by maintaining fractures more distal and transverse. Correlation analysis showed that bone strength was predominantly determined by aBMD with minor contributions from structure and intrinsic strength as measured by nanoindentation and cracks density. In contrast, fracture location was predicted equally by aBMD, crack density and intrinsic modulus. The data suggest that not only bone strength but also the fracture pattern depends on previous damage and the effects of bone turnover on bone mass and structure. These observations may be relevant to further understand the mechanisms contributing to fracture pattern in long bone with different levels of bone remodeling, including atypical femur fracture.


Subject(s)
Bone Density/drug effects , Bone Remodeling/drug effects , Bone and Bones/metabolism , Fractures, Bone/drug therapy , Tibia/drug effects , Animals , Bone and Bones/drug effects , Male , Mice, Inbred C57BL , Models, Animal , Tibia/blood supply
15.
J Bone Miner Res ; 31(1): 98-115, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26175082

ABSTRACT

Metabolic and bone effects were investigated in growing (G, n = 45) and mature (M, n = 45) rats fed a high-fat/high-sucrose diet (HFS) isocaloric to the chow diet of controls (C, n = 30 per group). At week 19, a subset of 15 rats in each group (HFS or C, at both ages) was analyzed. Then one-half of the remaining 30 HFS rats in each groups continued HFS and one-half were shifted to C until week 27. Although no serum or bone marrow inflammation was seen, HFS increased visceral fat, serum leptin and insulin at week 19 and induced further alterations in lipid profile, serum adiponectin, and TGFß1, TIMP1, MMP2, and MMP9, suggesting a prediabetic phenotype and cardiovascular dysfunction at week 27 more pronounced in M than G. These events were associated with dramatic reduction of osteoclastic and osteoid surfaces with accelerated mineralizing surfaces in both HFS age groups. Mineral metabolism and its major regulators were disturbed, leading to hyperphosphatemia and hypocalcemia. These changes were associated with bone alterations in the weight-bearing tibia, not in the non-weight-bearing vertebra. Indeed in fat rats, tibia trabecular bone accrual increased in G whereas loss of trabecular bone in M was alleviated. At diaphysis cortical porosity increased in G and even more in M at week 27. After the diet switch, metabolic and bone cellular disturbances fully reversed in G, but not in M. Trabecular benefit of the obese was preserved in both age groups and in M the age-related bone loss was even lighter after the diet switch than in prolonged HFS. At the diaphysis, cortical porosity normalized in G but not in M. Hypocalcemia in G and M was irreversible. Thus, the mild metabolic syndrome induced by isocaloric HFS is able to alter bone cellular activities and mineral metabolism, reinforce trabecular bone, and affect cortical bone porosity in an irreversible manner in older rats.


Subject(s)
Aging/metabolism , Bone Marrow/metabolism , Dietary Fats/adverse effects , Hypocalcemia/metabolism , Obesity/metabolism , Sucrose/adverse effects , Aging/pathology , Animals , Bone Marrow/pathology , Dietary Fats/pharmacology , Hypocalcemia/chemically induced , Hypocalcemia/genetics , Hypocalcemia/pathology , Male , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Obesity/chemically induced , Obesity/pathology , Rats , Rats, Wistar , Spine/metabolism , Spine/pathology , Sucrose/pharmacology , Tibia/metabolism , Tibia/pathology , Tissue Inhibitor of Metalloproteinase-1/genetics , Tissue Inhibitor of Metalloproteinase-1/metabolism , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism
16.
J Physiol ; 593(12): 2665-77, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25820551

ABSTRACT

KEY POINTS: Some studies suggest that neuregulin 1 (NRG1) could be involved in the regulation of skeletal muscle energy metabolism in rodents. Here we assessed whether unbalanced diet is associated with alterations of the NRG1 signalling pathway and whether exercise and diet might restore NRG1 signalling in skeletal muscle of obese rats. We show that diet-induced obesity does not impair NRG1 signalling in rat skeletal muscle. We also report that endurance training and a well-balanced diet activate the NRG1 signalling in skeletal muscle of obese rats, possibly via a new mechanism mediated by the protease ADAM17. These results suggest that some beneficial effects of physical activity and diet in obese rats could be partly explained by stimulation of the NRG1 signalling pathway. ABSTRACT: Some studies suggest that the signalling pathway of neuregulin 1 (NRG1), a protein involved in the regulation of skeletal muscle metabolism, could be altered by nutritional and exercise interventions. We hypothesized that diet-induced obesity could lead to alterations of the NRG1 signalling pathway and that chronic exercise could improve NRG1 signalling in rat skeletal muscle. To test this hypothesis, male Wistar rats received a high fat/high sucrose (HF/HS) diet for 16 weeks. At the end of this period, NRG1 and ErbB expression/activity in skeletal muscle was assessed. The obese rats then continued the HF/HS diet or were switched to a well-balanced diet. Moreover, in both groups, half of the animals also performed low intensity treadmill exercise training. After another 8 weeks, NRG1 and ErbB expression/activity in skeletal muscle were tested again. The 16 week HF/HS diet induced obesity, but did not significantly affect the NRG1/ErbB signalling pathway in rat skeletal muscle. Conversely, after the switch to a well-balanced diet, NRG1 cleavage ratio and ErbB4 amount were increased. Chronic exercise training also promoted NRG1 cleavage, resulting in increased ErbB4 phosphorylation. This result was associated with increased protein expression and phosphorylation ratio of the metalloprotease ADAM17, which is involved in NRG1 shedding. Similarly, in vitro stretch-induced activation of ADAM17 in rat myoblasts induced NRG1 cleavage and ErbB4 activation. These results show that low intensity endurance training and well-balanced diet activate the NRG1-ErbB4 pathway, possibly via the metalloprotease ADAM17, in skeletal muscle of diet-induced obese rats.


Subject(s)
Diet , ErbB Receptors/metabolism , Neuregulin-1/metabolism , Obesity/metabolism , Physical Conditioning, Animal/physiology , ADAM Proteins/metabolism , ADAM17 Protein , Animals , ErbB Receptors/genetics , Male , Muscle, Skeletal/metabolism , Myoblasts/metabolism , Neuregulin-1/genetics , RNA, Messenger/metabolism , Rats, Wistar , Signal Transduction , Tissue Inhibitor of Metalloproteinase-3/metabolism
17.
Bone ; 71: 94-100, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25445447

ABSTRACT

Periostin (a product of Postn gene) is a matricellular protein which is increased in periosteal osteoblasts and osteocytes upon mechanical stimulation. We previously reported that periostin-deficient mice (Postn(-/-)) have low bone mass and a diminished response to physical activity due to a lack of sclerostin (a product of Sost gene) inhibition by mechanical loading. Here we hypothesized that periostin could play a central role in the control of bone loss during unloading induced by hindlimb suspension (HU). In Postn(+/+) mice (wildtype littermate), HU significantly decreased femur BMD, as well as trabecular BV/TV and thickness (Tb.Th). Cortical bone volume and thickness at the femoral midshaft, also significantly decreased. These changes were explained by an inhibition of endocortical and periosteal bone formation activity and correlated with a decrease of Postn expression and a consecutive increase in Sost early after HU. Whereas trabecular bone loss in Postn(-/-) mice was comparable to Postn(+/+) mice, HU did not significantly alter cortical bone microstructure and strength in Postn(-/-) mice. Bone formation remained unchanged in these mice, as Sost did not increase in the absence of periostin. In contrast, changes in Dkk1, Rankl and Opg expression in response to HU were similar to Postn(+/+) mice, indicating that changes in periostin expression were quite specifically related to changes in Sost. In conclusion, HU inhibits periostin expression, which in turn plays an important role in cortical bone loss through an increase in Sost. These results further indicate that periostin is an essential mediator of cortical bone response to mechanical forces (loading and unloading).


Subject(s)
Bone Resorption/metabolism , Cell Adhesion Molecules/metabolism , Hindlimb Suspension , Adaptor Proteins, Signal Transducing , Animals , Body Weight , Bone Density , Bone Remodeling , Bone Resorption/pathology , Bone Resorption/physiopathology , Cell Adhesion Molecules/deficiency , Cell Count , Femur/pathology , Femur/physiopathology , Gene Expression Regulation , Glycoproteins/metabolism , Intercellular Signaling Peptides and Proteins , Male , Mice, Inbred C57BL , Osteoblasts/metabolism , Osteoclasts/metabolism , Osteoclasts/pathology , Spine/pathology , Spine/physiopathology
18.
Bone ; 53(2): 382-90, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23318975

ABSTRACT

The association of a well-balanced diet with exercise is a key strategy to treat obesity. However, weight loss is linked to an accelerated bone loss. Furthermore, exercise is known to induce beneficial effects on bone. We investigated the impact of a well-balanced isoenergetic reducing diet (WBR) and exercise on bone tissue in obese rats. Sixty male rats had previously been fed with a high fat/high sucrose diet (HF/HS) for 4months to induce obesity. Then, 4 regimens were initiated for 2months: HF/HS diet plus exercise (treadmill: 50min/day, 5days/week), WBR diet plus exercise, HF/HS diet plus inactivity and WBR diet plus inactivity. Body composition and total BMD were assessed using DXA and visceral fat mass was weighed. Tibia densitometry was assessed by Piximus. Bone histomorphometry was performed on the proximal metaphysis of tibia and on L2 vertebrae (L2). Trabecular micro-architectural parameters were measured on tibia and L2 by 3D microtomography. Plasma concentration of osteocalcin and CTX were measured. Both WBR diet and exercise had decreased global weight, global fat and visceral fat mass (p<0.05). The WBR diet alone failed to alter total and tibia bone mass and BMD. However, Tb.Th, bone volume density and degree of anisotropy of tibia were decreased by the WBR diet (p<0.05). Moreover, the WBR diet had involved a significant lower MS/BS and BFR/BS in L2 (p<0.05). Exercise had significantly improved BMD of the tibia possibly by inhibiting the bone resorption, as evidenced by no change in plasma osteocalcin levels, a decrease of CTX levels (p<0.005) and trabecular osteoclast number (p<0.05). In the present study a diet inducing weight and fat mass losses did not affected bone mass and BMD of obese rats despite alterations of their bone micro-architecture. The moderate intensity exercise performed had improved the tibia BMD of obese rats without any trabecular and cortical adaptation.


Subject(s)
Bone Density/physiology , Bone and Bones/metabolism , Obesity/diet therapy , Obesity/therapy , Animals , Body Composition/physiology , Body Weight/physiology , Glucose Tolerance Test , Male , Rats , Rats, Wistar
19.
Lipids Health Dis ; 11: 91, 2012 Jul 10.
Article in English | MEDLINE | ID: mdl-22781503

ABSTRACT

BACKGROUND: The relationships between fat mass and bone tissue are complex and not fully elucidated. A high-fat/high-sucrose diet has been shown to induce harmful effects on bone micro architecture and bone biomechanics of rat. When such diet leads to obesity, it may induce an improvement of biomechanical bone parameters in rodent.Here, we examined the impact of a high-fat/high-sucrose diet on the body composition and its resulting effects on bone density and structure in male rats. Forty three Wistar rats aged 7 months were split into 3 groups: 1 sacrificed before diet (BD, n = 14); 1 subjected to 16 weeks of high-fat/high-sucrose diet (HF/HS, n = 14); 1 subjected to standard diet (Control, n = 15). Abdominal circumference and insulin sensitivity were measured and visceral fat mass was weighed. The bone mineral density (BMD) was analyzed at the whole body and tibia by densitometry. Microcomputed tomography and histomorphometric analysis were performed at L2 vertebrae and tibia to study the trabecular and cortical bone structures and the bone cell activities. Osteocalcin and CTX levels were performed to assess the relative balance of the bone formation and resorption. Differences between groups have been tested with an ANOVA with subsequent Scheffe post-hoc test. An ANCOVA with global mass and global fat as covariates was used to determine the potential implication of the resulting mechanical loading on bone. RESULTS: The HF/HS group had higher body mass, fat masses and abdominal circumference and developed an impaired glucose tolerance (p < 0.001). Whole body bone mass (p < 0.001) and BMD (p < 0.05) were higher in HF/HS group vs. Control group. The trabecular thickness at vertebrae and the cortical porosity of tibia were improved (p < 0.05) in HF/HS group. Bone formation was predominant in HF/HS group while an unbalance bone favoring bone resorption was observed in the controls. The HF/HS and Control groups had higher total and abdominal fat masses and altered bone parameters vs. BD group. CONCLUSIONS: The HF/HS diet had induced obesity and impaired glucose tolerance. These changes resulted in an improvement of quantitative, qualitative and metabolic bone parameters. The fat mass increase partly explained these observations.


Subject(s)
Bone Density , Diet, High-Fat/adverse effects , Lumbar Vertebrae/pathology , Obesity/pathology , Tibia/pathology , Absorptiometry, Photon , Adiposity , Animals , Area Under Curve , Blood Glucose , Body Composition , Bone and Bones/metabolism , Bone and Bones/pathology , Insulin/blood , Intra-Abdominal Fat/pathology , Lumbar Vertebrae/metabolism , Male , Obesity/etiology , Obesity/metabolism , Rats , Rats, Wistar , Tibia/metabolism
20.
J Physiol ; 590(20): 5199-210, 2012 Oct 15.
Article in English | MEDLINE | ID: mdl-22802586

ABSTRACT

The object of the study was to investigate the sequential changes of protein synthesis in skeletal muscle during establishment of obesity, considering muscle typology. Adult Wistar rats were fed a standard diet for 16 weeks (C; n = 14), or a high-fat, high-sucrose diet for 16 (HF16; n = 14) or 24 weeks (HF24; n = 15). Body composition was measured using a dual-energy X-ray absorptiometry scanner. The fractional synthesis rates (FSRs) of muscle protein fractions were calculated in tibialis anterior (TA) and soleus muscles by incorporation of l-13C-valine in muscle protein. Muscle lipid and mitochondria contents were determined using histochemical analysis. Obesity occurred in an initial phase, from 1 to 16 weeks, with an increase in weight (P < 0.05), fat mass (P < 0.001), muscle mass (P < 0.001) and FSR in TA (actin: 5.3 ± 0.2 vs. 8.8 ± 0.5% day−1, C vs. HF16, P < 0.001) compared with standard diet. The second phase, from 16 to 24 weeks, was associated with a weight stabilization, a decrease in muscle mass (P < 0.05) and a decrease in FSR in TA (mitochondrial: 5.6 ± 0.2 vs. 4.2 ± 0.4% day−1, HF16 vs. HF24, P < 0.01) compared with HF16 group. Muscle lipid content was increased in TA in the second phase of obesity development (P < 0.001). Muscle mass, lipid infiltration and muscle protein synthesis were differently affected, depending on the stage of obesity development and muscle typology. Chronic lipid infiltration in glycolytic muscle is concomitant with a reduction of muscle protein synthesis, suggesting that muscle lipid infiltration in response to a high-fat diet is deleterious for the incorporation of amino acid in skeletal muscle proteins.


Subject(s)
Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Obesity/metabolism , Adipose Tissue/metabolism , Animals , Diet, High-Fat , Dietary Sucrose/administration & dosage , Lipid Metabolism , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...