Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters











Publication year range
1.
Cell Rep ; 43(8): 114483, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39024096

ABSTRACT

The striatum integrates dopaminergic and glutamatergic inputs to select preferred versus alternative actions. However, the precise mechanisms underlying this process remain unclear. One way to study action selection is to understand how it breaks down in pathological states. Here, we explored the cellular and synaptic mechanisms of levodopa-induced dyskinesia (LID), a complication of Parkinson's disease therapy characterized by involuntary movements. We used an activity-dependent tool (FosTRAP) in conjunction with a mouse model of LID to investigate functionally distinct subsets of striatal direct pathway medium spiny neurons (dMSNs). In vivo, levodopa differentially activates dyskinesia-associated (TRAPed) dMSNs compared to other dMSNs. We found this differential activation of TRAPed dMSNs is likely to be driven by higher dopamine receptor expression, dopamine-dependent excitability, and excitatory input from the motor cortex and thalamus. Together, these findings suggest how the intrinsic and synaptic properties of heterogeneous dMSN subpopulations integrate to support action selection.


Subject(s)
Corpus Striatum , Dopamine , Levodopa , Neurons , Animals , Dopamine/metabolism , Levodopa/pharmacology , Mice , Corpus Striatum/metabolism , Corpus Striatum/pathology , Neurons/metabolism , Dyskinesia, Drug-Induced/metabolism , Dyskinesia, Drug-Induced/pathology , Synapses/metabolism , Male , Mice, Inbred C57BL , Action Potentials/drug effects
2.
Res Sq ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38978598

ABSTRACT

The striatonigral neurons are known to promote locomotion1,2. These neurons reside in both the patch (also known as striosome) and matrix compartments of the dorsal striatum3-5. However, the specific contribution of patch and matrix striatonigral neurons to locomotion remain largely unexplored. Using molecular identifier Kringle-Containing Protein Marking the Eye and the Nose (Kremen1) and Calbidin (Calb1)6, we showed in mouse models that patch and matrix striatonigral neurons exert opposite influence on locomotion. While a reduction in neuronal activity in matrix striatonigral neurons precedes the cessation of locomotion, fiber photometry recording during self-paced movement revealed an unexpected increase of patch striatonigral neuron activity, indicating an inhibitory function. Indeed, optogenetic activation of patch striatonigral neurons suppressed locomotion, contrasting with the locomotion-promoting effect of matrix striatonigral neurons. Consistently, patch striatonigral neuron activation markedly inhibited dopamine release, whereas matrix striatonigral neuron activation initially promoted dopamine release. Moreover, the genetic deletion of inhibitory GABA-B receptor Gabbr1 in Aldehyde dehydrogenase 1A1-positive (ALDH1A1+) nigrostriatal dopaminergic neurons (DANs) completely abolished the locomotion-suppressing effect caused by activating patch striatonigral neurons. Together, our findings unravel a compartment-specific mechanism governing locomotion in the dorsal striatum, where patch striatonigral neurons suppress locomotion by inhibiting the activity of ALDH1A1+ nigrostriatal DANs.

3.
bioRxiv ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39005437

ABSTRACT

Flexible control of motor timing is crucial for behavior. Before volitional movement begins, the frontal cortex and striatum exhibit ramping spiking activity, with variable ramp slopes anticipating movement onsets. This activity in the cortico-basal ganglia loop may function as an adjustable 'timer,' triggering actions at the desired timing. However, because the frontal cortex and striatum share similar ramping dynamics and are both necessary for timing behaviors, distinguishing their individual roles in this timer function remains challenging. To address this, we conducted perturbation experiments combined with multi-regional electrophysiology in mice performing a flexible lick-timing task. Following transient silencing of the frontal cortex, cortical and striatal activity swiftly returned to pre-silencing levels and resumed ramping, leading to a shift in lick timing close to the silencing duration. Conversely, briefly inhibiting the striatum caused a gradual decrease in ramping activity in both regions, with ramping resuming from post-inhibition levels, shifting lick timing beyond the inhibition duration. Thus, inhibiting the frontal cortex and striatum effectively paused and rewound the timer, respectively. These findings suggest the striatum is a part of the network that temporally integrates input from the frontal cortex and generates ramping activity that regulates motor timing.

4.
Curr Protoc ; 4(7): e1066, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39073034

ABSTRACT

Image data from a single animal in neuroscientific experiments can be comprised of terabytes of information. Full studies can thus be challenging to analyze, store, view, and manage. What follows is an updated guide for preparing and sharing big neuroanatomical image data. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Naming and organizing images and metadata Basic Protocol 2: Preparing and annotating images for presentations and figures Basic Protocol 3: Assessing the internet environment and optimizing images.


Subject(s)
Image Processing, Computer-Assisted , Neuroanatomy , Neuroanatomy/methods , Image Processing, Computer-Assisted/methods , Animals , Internet , Humans , Metadata
5.
bioRxiv ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38915717

ABSTRACT

Striatonigral neurons, known to promote locomotion, reside in both the patch and matrix compartments of the dorsal striatum. However, their compartment-specific contributions to locomotion remain largely unexplored. Using molecular identifier Kremen1 and Calb1 , we showed in mouse models that patch and matrix striatonigral neurons exert opposite influences on locomotion. Matrix striatonigral neurons reduced their activity before the cessation of self-paced locomotion, while patch striatonigral neuronal activity increased, suggesting an inhibitory function. Indeed, optogenetic activation of patch striatonigral neurons suppressed ongoing locomotion with reduced striatal dopamine release, contrasting with the locomotion-promoting effect of matrix striatonigral neurons, which showed an initial increase in dopamine release. Furthermore, genetic deletion of the GABA-B receptor in Aldehyde dehydrogenase 1A1-positive (ALDH1A1 + ) nigrostriatal dopaminergic neurons completely abolished the locomotion-suppressing effect of patch striatonigral neurons. Our findings unravel a compartment-specific mechanism governing locomotion in the dorsal striatum, where patch striatonigral neurons suppress locomotion by inhibiting ALDH1A1 + nigrostriatal dopaminergic neurons.

6.
J Neurosci ; 44(33)2024 Aug 14.
Article in English | MEDLINE | ID: mdl-38937102

ABSTRACT

The neocortex and striatum are topographically organized for sensory and motor functions. While sensory and motor areas are lateralized for touch and motor control, respectively, frontal areas are involved in decision-making, where lateralization of function may be less important. This study contrasted the topographic precision of cell-type-specific ipsilateral and contralateral cortical projections while varying the injection site location in transgenic mice of both sexes. While sensory cortical areas had strongly topographic outputs to the ipsilateral cortex and striatum, they were weaker and not as topographically precise to contralateral targets. The motor cortex had somewhat stronger projections but still relatively weak contralateral topography. In contrast, frontal cortical areas had high degrees of topographic similarity for both ipsilateral and contralateral projections to the cortex and striatum. Corticothalamic organization is mainly ipsilateral, with weaker, more medial contralateral projections. Corticostriatal computations might integrate input outside closed basal ganglia loops using contralateral projections, enabling the two hemispheres to act as a unit to converge on one result in motor planning and decision-making.


Subject(s)
Frontal Lobe , Mice, Transgenic , Motor Cortex , Neural Pathways , Somatosensory Cortex , Animals , Motor Cortex/physiology , Male , Female , Mice , Somatosensory Cortex/physiology , Frontal Lobe/physiology , Neural Pathways/physiology , Functional Laterality/physiology , Corpus Striatum/physiology
7.
Nature ; 626(8001): 1066-1072, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38326610

ABSTRACT

Animals can learn about sources of danger while minimizing their own risk by observing how others respond to threats. However, the distinct neural mechanisms by which threats are learned through social observation (known as observational fear learning1-4 (OFL)) to generate behavioural responses specific to such threats remain poorly understood. The dorsomedial prefrontal cortex (dmPFC) performs several key functions that may underlie OFL, including processing of social information and disambiguation of threat cues5-11. Here we show that dmPFC is recruited and required for OFL in mice. Using cellular-resolution microendoscopic calcium imaging, we demonstrate that dmPFC neurons code for observational fear and do so in a manner that is distinct from direct experience. We find that dmPFC neuronal activity predicts upcoming switches between freezing and moving state elicited by threat. By combining neuronal circuit mapping, calcium imaging, electrophysiological recordings and optogenetics, we show that dmPFC projections to the midbrain periaqueductal grey (PAG) constrain observer freezing, and that amygdalar and hippocampal inputs to dmPFC opposingly modulate observer freezing. Together our findings reveal that dmPFC neurons compute a distinct code for observational fear and coordinate long-range neural circuits to select behavioural responses.


Subject(s)
Cues , Fear , Neural Pathways , Prefrontal Cortex , Social Learning , Animals , Mice , Amygdala/physiology , Calcium/metabolism , Electrophysiology , Fear/physiology , Hippocampus/physiology , Neural Pathways/physiology , Neurons/physiology , Optogenetics , Periaqueductal Gray/cytology , Periaqueductal Gray/physiology , Photic Stimulation , Prefrontal Cortex/cytology , Prefrontal Cortex/physiology , Social Learning/physiology , Freezing Reaction, Cataleptic/physiology
8.
Nat Commun ; 14(1): 7358, 2023 11 14.
Article in English | MEDLINE | ID: mdl-37963894

ABSTRACT

Action selection occurs through competition between potential choice options. Neural correlates of choice competition are observed across frontal cortex and downstream superior colliculus (SC) during decision-making, yet how these regions interact to mediate choice competition remains unresolved. Here we report that SC can bidirectionally modulate choice competition and drive choice activity in frontal cortex. In the mouse, topographically matched regions of frontal cortex and SC formed a descending motor pathway for directional licking and a re-entrant loop via the thalamus. During decision-making, distinct neuronal populations in both frontal cortex and SC encoded opposing lick directions and exhibited competitive interactions. SC GABAergic neurons encoded ipsilateral choice and locally inhibited glutamatergic neurons that encoded contralateral choice. Activating or suppressing these cell types could bidirectionally drive choice activity in frontal cortex. These results thus identify SC as a major locus to modulate choice competition within the broader action selection network.


Subject(s)
Frontal Lobe , Superior Colliculi , Mice , Animals , Superior Colliculi/physiology , Frontal Lobe/physiology , Neurons/physiology , Thalamus
9.
bioRxiv ; 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37609277

ABSTRACT

Neocortical spiking dynamics control aspects of behavior, yet how these dynamics emerge during motor learning remains elusive. Activity-dependent synaptic plasticity is likely a key mechanism, as it reconfigures network architectures that govern neural dynamics. Here, we examined how the mouse premotor cortex acquires its well-characterized neural dynamics that control movement timing, specifically lick timing. To probe the role of synaptic plasticity, we have genetically manipulated proteins essential for major forms of synaptic plasticity, Ca2+/calmodulin-dependent protein kinase II (CaMKII) and Cofilin, in a region and cell-type-specific manner. Transient inactivation of CaMKII in the premotor cortex blocked learning of new lick timing without affecting the execution of learned action or ongoing spiking activity. Furthermore, among the major glutamatergic neurons in the premotor cortex, CaMKII and Cofilin activity in pyramidal tract (PT) neurons, but not intratelencephalic (IT) neurons, is necessary for learning. High-density electrophysiology in the premotor cortex uncovered that neural dynamics anticipating licks are progressively shaped during learning, which explains the change in lick timing. Such reconfiguration in behaviorally relevant dynamics is impeded by CaMKII manipulation in PT neurons. Altogether, the activity of plasticity-related proteins in PT neurons plays a central role in sculpting neocortical dynamics to learn new behavior.

10.
bioRxiv ; 2023 May 25.
Article in English | MEDLINE | ID: mdl-37425800

ABSTRACT

Neuronal connections provide the scaffolding for neuronal function. Revealing the connectivity of functionally identified individual neurons is necessary to understand how activity patterns emerge and support behavior. Yet, the brain-wide presynaptic wiring rules that lay the foundation for the functional selectivity of individual neurons remain largely unexplored. Cortical neurons, even in primary sensory cortex, are heterogeneous in their selectivity, not only to sensory stimuli but also to multiple aspects of behavior. Here, to investigate presynaptic connectivity rules underlying the selectivity of pyramidal neurons to behavioral state 1-12 in primary somatosensory cortex (S1), we used two-photon calcium imaging, neuropharmacology, single-cell based monosynaptic input tracing, and optogenetics. We show that behavioral state-dependent neuronal activity patterns are stable over time. These are not determined by neuromodulatory inputs but are instead driven by glutamatergic inputs. Analysis of brain-wide presynaptic networks of individual neurons with distinct behavioral state-dependent activity profiles revealed characteristic patterns of anatomical input. While both behavioral state-related and unrelated neurons had a similar pattern of local inputs within S1, their long-range glutamatergic inputs differed. Individual cortical neurons, irrespective of their functional properties, received converging inputs from the main S1-projecting areas. Yet, neurons that tracked behavioral state received a smaller proportion of motor cortical inputs and a larger proportion of thalamic inputs. Optogenetic suppression of thalamic inputs reduced behavioral state-dependent activity in S1, but this activity was not externally driven. Our results revealed distinct long-range glutamatergic inputs as a substrate for preconfigured network dynamics associated with behavioral state.

11.
bioRxiv ; 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37398221

ABSTRACT

Neocortex and striatum are topographically organized by cortical areas representing sensory and motor functions, where primary cortical areas are generally used as models for other cortical regions. But different cortical areas are specialized for distinct purposes, with sensory and motor areas lateralized for touch and motor control, respectively. Frontal areas are involved in decision making, where lateralization of function may be less important. This study contrasted the topographic precision of ipsilateral and contralateral projections from cortex based on the injection site location. While sensory cortical areas had strongly topographic outputs to ipsilateral cortex and striatum, they were weaker and not as topographically strong to contralateral targets. Motor cortex had somewhat stronger projections, but still relatively weak contralateral topography. In contrast, frontal cortical areas had high degrees of topographic similarity for both ipsilateral and contralateral projections to cortex and striatum. This contralateral connectivity reflects on the pathways in which corticostriatal computations might integrate input outside closed basal ganglia loops, enabling the two hemispheres to act as a single unit and converge on one result in motor planning and decision making.

12.
bioRxiv ; 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37162880

ABSTRACT

Action selection occurs through competition between potential choice options. Neural correlates of choice competition are observed across frontal cortex and downstream superior colliculus (SC) during decision-making, yet how these regions interact to mediate choice competition remains unresolved. Here we report that cell types within SC can bidirectionally modulate choice competition and drive choice activity in frontal cortex. In the mouse, topographically matched regions of frontal cortex and SC formed a descending motor pathway for directional licking and a re-entrant loop via the thalamus. During decision-making, distinct neuronal populations in both frontal cortex and SC encoded opposing lick directions and exhibited push-pull dynamics. SC GABAergic neurons encoded ipsilateral choice and glutamatergic neurons encoded contralateral choice, and activating or suppressing these cell types could bidirectionally drive push-pull choice activity in frontal cortex. These results thus identify SC as a major locus to modulate choice competition within the broader action selection network.

13.
Neuron ; 111(14): 2247-2257.e7, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37172584

ABSTRACT

Cortical responses to visual stimuli are believed to rely on the geniculo-striate pathway. However, recent work has challenged this notion by showing that responses in the postrhinal cortex (POR), a visual cortical area, instead depend on the tecto-thalamic pathway, which conveys visual information to the cortex via the superior colliculus (SC). Does POR's SC-dependence point to a wider system of tecto-thalamic cortical visual areas? What information might this system extract from the visual world? We discovered multiple mouse cortical areas whose visual responses rely on SC, with the most lateral showing the strongest SC-dependence. This system is driven by a genetically defined cell type that connects the SC to the pulvinar thalamic nucleus. Finally, we show that SC-dependent cortices distinguish self-generated from externally generated visual motion. Hence, lateral visual areas comprise a system that relies on the tecto-thalamic pathway and contributes to processing visual motion as animals move through the environment.


Subject(s)
Pulvinar , Superior Colliculi , Mice , Animals , Superior Colliculi/physiology , Visual Pathways/physiology , Thalamus , Thalamic Nuclei , Geniculate Bodies/physiology
14.
Nat Commun ; 14(1): 1920, 2023 04 06.
Article in English | MEDLINE | ID: mdl-37024449

ABSTRACT

Fronto-striatal circuits have been implicated in cognitive control of behavioral output for social and appetitive rewards. The functional diversity of prefrontal cortical populations is strongly dependent on their synaptic targets, with control of motor output mediated by connectivity to dorsal striatum. Despite evidence for functional diversity along the anterior-posterior striatal axis, it is unclear how distinct fronto-striatal sub-circuits support value-based choice. Here we found segregated prefrontal populations defined by anterior/posterior dorsomedial striatal target. During a feedback-based 2-alternative choice task, single-photon imaging revealed circuit-specific representations of task-relevant information with prelimbic neurons targeting anterior DMS (PL::A-DMS) robustly modulated during choices and negative outcomes, while prelimbic neurons targeting posterior DMS (PL::P-DMS) encoded internal representations of value and positive outcomes contingent on prior choice. Consistent with this distributed coding, optogenetic inhibition of PL::A-DMS circuits strongly impacted choice monitoring and responses to negative outcomes while inhibition of PL::P-DMS impaired task engagement and strategies following positive outcomes. Together our data uncover PL populations engaged in distributed processing for value-based choice.


Subject(s)
Corpus Striatum , Neostriatum , Mice , Male , Animals , Corpus Striatum/physiology , Prefrontal Cortex/physiology , Inhibition, Psychological
16.
J Neurosci ; 42(43): 8095-8112, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36104281

ABSTRACT

Intracortical inhibition in motor cortex (M1) regulates movement and motor learning. If cortical and thalamic inputs target different inhibitory cell types in different layers, then these afferents may play different roles in regulating M1 output. Using mice of both sexes, we quantified input to two main classes of M1 interneurons, parvalbumin+ (PV+) cells and somatostatin+ (SOM+) cells, using monosynaptic rabies tracing. We then compared anatomic and functional connectivity based on synaptic strength from sensory cortex and thalamus. Functionally, each input innervated M1 interneurons with a unique laminar profile. Different interneuron types were excited in a distinct, complementary manner, suggesting feedforward inhibition proceeds selectively via distinct circuits. Specifically, somatosensory cortex (S1) inputs primarily targeted PV+ neurons in upper layers (L2/3) but SOM+ neurons in middle layers (L5). Somatosensory thalamus [posterior nucleus (PO)] inputs targeted PV+ neurons in middle layers (L5). In contrast to sensory cortical areas, thalamic input to SOM+ neurons was equivalent to that of PV+ neurons. Thus, long-range excitatory inputs target inhibitory neurons in an area and a cell type-specific manner, which contrasts with input to neighboring pyramidal cells. In contrast to feedforward inhibition providing generic inhibitory tone in cortex, circuits are selectively organized to recruit inhibition matched to incoming excitatory circuits.SIGNIFICANCE STATEMENT M1 integrates sensory information and frontal cortical inputs to plan and control movements. Although inputs to excitatory cells are described, the synaptic circuits by which these inputs drive specific types of M1 interneurons are unknown. Anatomical results with rabies tracing and physiological quantification of synaptic strength shows that two main classes of inhibitory cells (PV+ and SOM+ interneurons) both receive substantial cortical and thalamic input, in contrast to interneurons in sensory areas (where thalamic input strongly prefers PV+ interneurons). Further, each input studied targets PV+ and SOM+ interneurons in a different fashion, suggesting that separate, specific circuits exist for recruitment of feedforward inhibition.


Subject(s)
Motor Cortex , Rabies , Female , Male , Mice , Animals , Parvalbumins/metabolism , Motor Cortex/metabolism , Rabies/metabolism , Thalamus/physiology , Neurons/physiology , Interneurons/physiology , Somatostatin/metabolism
17.
iScience ; 25(5): 104245, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35494244

ABSTRACT

Dorsal striatum is important for movement control and motor skill learning. However, it remains unclear how the spatially and temporally distributed striatal medium spiny neuron (MSN) activity in the direct and indirect pathways (D1 and D2 MSNs, respectively) encodes motor skill learning. Combining miniature fluorescence microscopy with an accelerating rotarod procedure, we identified two distinct MSN subpopulations involved in accelerating rotarod learning. In both D1 and D2 MSNs, we observed neurons that displayed activity tuned to acceleration during early stages of trials, as well as movement speed during late stages of trials. We found a distinct evolution trajectory for early-stage neurons during motor skill learning, with the evolution of D1 MSNs correlating strongly with performance improvement. Importantly, optogenetic inhibition of the early-stage neural activity in D1 MSNs, but not D2 MSNs, impaired accelerating rotarod learning. Together, this study provides insight into striatal D1 and D2 MSNs encoding motor skill learning.

18.
Cell ; 185(6): 1065-1081.e23, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35245431

ABSTRACT

Motor behaviors are often planned long before execution but only released after specific sensory events. Planning and execution are each associated with distinct patterns of motor cortex activity. Key questions are how these dynamic activity patterns are generated and how they relate to behavior. Here, we investigate the multi-regional neural circuits that link an auditory "Go cue" and the transition from planning to execution of directional licking. Ascending glutamatergic neurons in the midbrain reticular and pedunculopontine nuclei show short latency and phasic changes in spike rate that are selective for the Go cue. This signal is transmitted via the thalamus to the motor cortex, where it triggers a rapid reorganization of motor cortex state from planning-related activity to a motor command, which in turn drives appropriate movement. Our studies show how midbrain can control cortical dynamics via the thalamus for rapid and precise motor behavior.


Subject(s)
Motor Cortex , Movement , Thalamus , Animals , Mesencephalon , Mice , Motor Cortex/physiology , Neurons/physiology , Thalamus/physiology
19.
Front Synaptic Neurosci ; 14: 1002960, 2022.
Article in English | MEDLINE | ID: mdl-36741471

ABSTRACT

The direct and indirect striatal pathways form a cornerstone of the circuits of the basal ganglia. Dopamine has opponent affects on the function of these pathways due to the segregation of the D1- and D2-dopamine receptors in the spiny projection neurons giving rise to the direct and indirect pathways. An historical perspective is provided on the discovery of dopamine receptor segregation leading to models of how the direct and indirect affect motor behavior.

20.
Science ; 372(6540)2021 04 23.
Article in English | MEDLINE | ID: mdl-33888613

ABSTRACT

The integrated stress response (ISR) maintains proteostasis by modulating protein synthesis and is important in synaptic plasticity, learning, and memory. We developed a reporter, SPOTlight, for brainwide imaging of ISR state with cellular resolution. Unexpectedly, we found a class of neurons in mouse brain, striatal cholinergic interneurons (CINs), in which the ISR was activated at steady state. Genetic and pharmacological manipulations revealed that ISR signaling was necessary in CINs for normal type 2 dopamine receptor (D2R) modulation. Inhibiting the ISR inverted the sign of D2R modulation of CIN firing and evoked dopamine release and altered skill learning. Thus, a noncanonical, steady-state mode of ISR activation is found in CINs, revealing a neuromodulatory role for the ISR in learning.


Subject(s)
Cholinergic Neurons/metabolism , Dopamine/metabolism , Interneurons/physiology , Learning/physiology , Stress, Physiological , Action Potentials , Animals , Corpus Striatum/cytology , Corpus Striatum/physiology , Female , Male , Mice , Mice, Inbred C57BL , Motor Skills , Neuronal Plasticity , Patch-Clamp Techniques , Protein Biosynthesis , Receptors, Dopamine D2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL