Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Alzheimers Dement ; 20(5): 3525-3542, 2024 May.
Article in Italian | MEDLINE | ID: mdl-38623902

ABSTRACT

INTRODUCTION: Effective longitudinal biomarkers that track disease progression are needed to characterize the presymptomatic phase of genetic frontotemporal dementia (FTD). We investigate the utility of cerebral perfusion as one such biomarker in presymptomatic FTD mutation carriers. METHODS: We investigated longitudinal profiles of cerebral perfusion using arterial spin labeling magnetic resonance imaging in 42 C9orf72, 70 GRN, and 31 MAPT presymptomatic carriers and 158 non-carrier controls. Linear mixed effects models assessed perfusion up to 5 years after baseline assessment. RESULTS: Perfusion decline was evident in all three presymptomatic groups in global gray matter. Each group also featured its own regional pattern of hypoperfusion over time, with the left thalamus common to all groups. Frontal lobe regions featured lower perfusion in those who symptomatically converted versus asymptomatic carriers past their expected age of disease onset. DISCUSSION: Cerebral perfusion is a potential biomarker for assessing genetic FTD and its genetic subgroups prior to symptom onset. HIGHLIGHTS: Gray matter perfusion declines in at-risk genetic frontotemporal dementia (FTD). Regional perfusion decline differs between at-risk genetic FTD subgroups . Hypoperfusion in the left thalamus is common across all presymptomatic groups. Converters exhibit greater right frontal hypoperfusion than non-converters past their expected conversion date. Cerebral hypoperfusion is a potential early biomarker of genetic FTD.


Subject(s)
C9orf72 Protein , Cerebrovascular Circulation , Frontotemporal Dementia , Magnetic Resonance Imaging , tau Proteins , Humans , Frontotemporal Dementia/genetics , Frontotemporal Dementia/physiopathology , Frontotemporal Dementia/diagnostic imaging , Female , Male , Middle Aged , Longitudinal Studies , Cerebrovascular Circulation/physiology , Cerebrovascular Circulation/genetics , C9orf72 Protein/genetics , tau Proteins/genetics , Gray Matter/diagnostic imaging , Gray Matter/pathology , Progranulins/genetics , Biomarkers , Disease Progression , Brain/diagnostic imaging , Heterozygote , Mutation , Aged , Spin Labels , Adult
2.
J Neurol Sci ; 451: 120711, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37348248

ABSTRACT

OBJECTIVE: To identify whether language impairment exists presymptomatically in genetic frontotemporal dementia (FTD), and if so, the key differences between the main genetic mutation groups. METHODS: 682 participants from the international multicentre Genetic FTD Initiative (GENFI) study were recruited: 290 asymptomatic and 82 prodromal mutation carriers (with C9orf72, GRN, and MAPT mutations) as well as 310 mutation-negative controls. Language was assessed using items from the Progressive Aphasia Severity Scale, as well as the Boston Naming Test (BNT), modified Camel and Cactus Test (mCCT) and a category fluency task. Participants also underwent a 3 T volumetric T1-weighted MRI from which regional brain volumes within the language network were derived and compared between the groups. RESULTS: 3% of asymptomatic (4% C9orf72, 4% GRN, 2% MAPT) and 48% of prodromal (46% C9orf72, 42% GRN, 64% MAPT) mutation carriers had impairment in at least one language symptom compared with 13% of controls. In prodromal mutation carriers significantly impaired word retrieval was seen in all three genetic groups whilst significantly impaired grammar/syntax and decreased fluency was seen only in C9orf72 and GRN mutation carriers, and impaired articulation only in the C9orf72 group. Prodromal MAPT mutation carriers had significant impairment on the category fluency task and the BNT whilst prodromal C9orf72 mutation carriers were impaired on the category fluency task only. Atrophy in the dominant perisylvian language regions differed between groups, with earlier, more widespread volume loss in C9orf72, and later focal atrophy in the temporal lobe in MAPT mutation carriers. CONCLUSIONS: Language deficits exist in the prodromal but not asymptomatic stages of genetic FTD across all three genetic groups. Improved understanding of the language phenotype prior to phenoconversion to fully symptomatic FTD will help develop outcome measures for future presymptomatic trials.


Subject(s)
Frontotemporal Dementia , Language Development Disorders , Humans , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/genetics , Progranulins/genetics , C9orf72 Protein/genetics , Atrophy , Mutation/genetics , tau Proteins/genetics
3.
Brain ; 146(1): 321-336, 2023 01 05.
Article in English | MEDLINE | ID: mdl-35188955

ABSTRACT

Connections among brain regions allow pathological perturbations to spread from a single source region to multiple regions. Patterns of neurodegeneration in multiple diseases, including behavioural variant of frontotemporal dementia (bvFTD), resemble the large-scale functional systems, but how bvFTD-related atrophy patterns relate to structural network organization remains unknown. Here we investigate whether neurodegeneration patterns in sporadic and genetic bvFTD are conditioned by connectome architecture. Regional atrophy patterns were estimated in both genetic bvFTD (75 patients, 247 controls) and sporadic bvFTD (70 patients, 123 controls). First, we identified distributed atrophy patterns in bvFTD, mainly targeting areas associated with the limbic intrinsic network and insular cytoarchitectonic class. Regional atrophy was significantly correlated with atrophy of structurally- and functionally-connected neighbours, demonstrating that network structure shapes atrophy patterns. The anterior insula was identified as the predominant group epicentre of brain atrophy using data-driven and simulation-based methods, with some secondary regions in frontal ventromedial and antero-medial temporal areas. We found that FTD-related genes, namely C9orf72 and TARDBP, confer local transcriptomic vulnerability to the disease, modulating the propagation of pathology through the connectome. Collectively, our results demonstrate that atrophy patterns in sporadic and genetic bvFTD are jointly shaped by global connectome architecture and local transcriptomic vulnerability, providing an explanation as to how heterogenous pathological entities can lead to the same clinical syndrome.


Subject(s)
Connectome , Frontotemporal Dementia , Pick Disease of the Brain , Humans , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Transcriptome , Brain/pathology , Pick Disease of the Brain/pathology , Atrophy/pathology , Magnetic Resonance Imaging , Neuropsychological Tests
4.
Cortex ; 150: 12-28, 2022 05.
Article in English | MEDLINE | ID: mdl-35325762

ABSTRACT

BACKGROUND: Reduced empathy is a common symptom in frontotemporal dementia (FTD). Although empathy deficits have been extensively researched in sporadic cases, few studies have explored the differences in familial forms of FTD. METHODS: Empathy was examined using a modified version of the Interpersonal Reactivity Index (mIRI) in 676 participants from the Genetic FTD Initiative: 216 mutation-negative controls, 192 C9orf72 expansion carriers, 193 GRN mutation carriers and 75 MAPT mutation carriers. Using global scores from the CDR® plus NACC FTLD, mutation carriers were divided into three groups, asymptomatic (0), very mildly symptomatic/prodromal (.5), or fully symptomatic (1 or more). The mIRI Total score, as well as the subscores of Empathic Concern (EC) and Perspective Taking (PT) were assessed. Linear regression models with bootstrapping were used to assess empathy ratings across genetic groups, as well as across phenotypes in the symptomatic carriers. Neural correlates of empathy deficits were examined using a voxel-based morphometry (VBM) analysis. RESULTS: All fully symptomatic groups scored lower on the mIRI Total, EC, and PT when compared to controls and their asymptomatic or prodromal counterparts (all p < .001). Prodromal C9orf72 expansion carriers also scored significantly lower than controls on the mIRI Total score (p = .046). In the phenotype analysis, all groups (behavioural variant FTD, primary progressive aphasia and FTD with amyotrophic lateral sclerosis) scored significantly lower than controls (all p < .007). VBM revealed an overlapping neural correlate of the mIRI Total score across genetic groups in the orbitofrontal lobe but with additional involvement in the temporal lobe, insula and basal ganglia in both the GRN and MAPT groups, and uniquely more posterior regions such as the parietal lobe and thalamus in the GRN group, and medial temporal structures in the MAPT group. CONCLUSIONS: Significant empathy deficits present in genetic FTD, particularly in symptomatic individuals and those with a bvFTD phenotype, while prodromal deficits are only seen using the mIRI in C9orf72 expansion carriers.


Subject(s)
Frontotemporal Dementia , Pick Disease of the Brain , C9orf72 Protein/genetics , Empathy , Frontotemporal Dementia/diagnosis , Frontotemporal Dementia/genetics , Humans , Mutation , Progranulins/genetics , tau Proteins/genetics
5.
Hum Brain Mapp ; 43(6): 1821-1835, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35118777

ABSTRACT

Frontotemporal dementia in genetic forms is highly heterogeneous and begins many years to prior symptom onset, complicating disease understanding and treatment development. Unifying methods to stage the disease during both the presymptomatic and symptomatic phases are needed for the development of clinical trials outcomes. Here we used the contrastive trajectory inference (cTI), an unsupervised machine learning algorithm that analyzes temporal patterns in high-dimensional large-scale population datasets to obtain individual scores of disease stage. We used cross-sectional MRI data (gray matter density, T1/T2 ratio as a proxy for myelin content, resting-state functional amplitude, gray matter fractional anisotropy, and mean diffusivity) from 383 gene carriers (269 presymptomatic and 115 symptomatic) and a control group of 253 noncarriers in the Genetic Frontotemporal Dementia Initiative. We compared the cTI-obtained disease scores to the estimated years to onset (age-mean age of onset in relatives), clinical, and neuropsychological test scores. The cTI based disease scores were correlated with all clinical and neuropsychological tests (measuring behavioral symptoms, attention, memory, language, and executive functions), with the highest contribution coming from mean diffusivity. Mean cTI scores were higher in the presymptomatic carriers than controls, indicating that the method may capture subtle pre-dementia cerebral changes, although this change was not replicated in a subset of subjects with complete data. This study provides a proof of concept that cTI can identify data-driven disease stages in a heterogeneous sample combining different mutations and disease stages of genetic FTD using only MRI metrics.


Subject(s)
Frontotemporal Dementia , Cross-Sectional Studies , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/genetics , Frontotemporal Dementia/psychology , Heterozygote , Humans , Language , Magnetic Resonance Imaging
6.
J Neurol Neurosurg Psychiatry ; 93(2): 158-168, 2022 02.
Article in English | MEDLINE | ID: mdl-34353857

ABSTRACT

BACKGROUND: Therapeutic trials are now underway in genetic forms of frontotemporal dementia (FTD) but clinical outcome measures are limited. The two most commonly used measures, the Clinical Dementia Rating (CDR)+National Alzheimer's Disease Coordinating Center (NACC) Frontotemporal Lobar Degeneration (FTLD) and the FTD Rating Scale (FRS), have yet to be compared in detail in the genetic forms of FTD. METHODS: The CDR+NACC FTLD and FRS were assessed cross-sectionally in 725 consecutively recruited participants from the Genetic FTD Initiative: 457 mutation carriers (77 microtubule-associated protein tau (MAPT), 187 GRN, 193 C9orf72) and 268 family members without mutations (non-carrier control group). 231 mutation carriers (51 MAPT, 92 GRN, 88 C9orf72) and 145 non-carriers had available longitudinal data at a follow-up time point. RESULTS: Cross-sectionally, the mean FRS score was lower in all genetic groups compared with controls: GRN mutation carriers mean 83.4 (SD 27.0), MAPT mutation carriers 78.2 (28.8), C9orf72 mutation carriers 71.0 (34.0), controls 96.2 (7.7), p<0.001 for all comparisons, while the mean CDR+NACC FTLD Sum of Boxes was significantly higher in all genetic groups: GRN mutation carriers mean 2.6 (5.2), MAPT mutation carriers 3.2 (5.6), C9orf72 mutation carriers 4.2 (6.2), controls 0.2 (0.6), p<0.001 for all comparisons. Mean FRS score decreased and CDR+NACC FTLD Sum of Boxes increased with increasing disease severity within each individual genetic group. FRS and CDR+NACC FTLD Sum of Boxes scores were strongly negatively correlated across all mutation carriers (rs=-0.77, p<0.001) and within each genetic group (rs=-0.67 to -0.81, p<0.001 in each group). Nonetheless, discrepancies in disease staging were seen between the scales, and with each scale and clinician-judged symptomatic status. Longitudinally, annualised change in both FRS and CDR+NACC FTLD Sum of Boxes scores initially increased with disease severity level before decreasing in those with the most severe disease: controls -0.1 (6.0) for FRS, -0.1 (0.4) for CDR+NACC FTLD Sum of Boxes, asymptomatic mutation carriers -0.5 (8.2), 0.2 (0.9), prodromal disease -2.3 (9.9), 0.6 (2.7), mild disease -10.2 (18.6), 3.0 (4.1), moderate disease -9.6 (16.6), 4.4 (4.0), severe disease -2.7 (8.3), 1.7 (3.3). Sample sizes were calculated for a trial of prodromal mutation carriers: over 180 participants per arm would be needed to detect a moderate sized effect (30%) for both outcome measures, with sample sizes lower for the FRS. CONCLUSIONS: Both the FRS and CDR+NACC FTLD measure disease severity in genetic FTD mutation carriers throughout the timeline of their disease, although the FRS may be preferable as an outcome measure. However, neither address a number of key symptoms in the FTD spectrum, for example, motor and neuropsychiatric deficits, which future scales will need to incorporate.


Subject(s)
Frontotemporal Dementia/diagnosis , Mental Status and Dementia Tests , C9orf72 Protein , Cohort Studies , Cross-Sectional Studies , Disease Progression , Humans , Mutation , tau Proteins
7.
Appl Neuropsychol Adult ; 29(1): 112-119, 2022.
Article in English | MEDLINE | ID: mdl-32024404

ABSTRACT

Impaired semantic knowledge is a characteristic feature of some forms of frontotemporal dementia (FTD), particularly the sporadic disorder semantic dementia. Less is known about semantic cognition in the genetic forms of FTD caused by mutations in the genes MAPT, C9orf72, and GRN. We developed a modified version of the Camel and Cactus Test (mCCT) to investigate the presence of semantic difficulties in a large genetic FTD cohort from the Genetic FTD Initiative (GENFI) study. Six-hundred-forty-four participants were tested with the mCCT including 67 MAPT mutation carriers (15 symptomatic, and 52 in the presymptomatic period), 165 GRN mutation carriers (33 symptomatic, 132 presymptomatic), and 164 C9orf72 mutation carriers (56 symptomatic, 108 presymptomatic) and 248 mutation-negative members of FTD families who acted as a control group. The presymptomatic mutation carriers were further split into those early and late in the presymptomatic period (more than vs. within 10 years of expected symptom onset). Groups were compared using a linear regression model, adjusting for age and education, with bootstrapping. Performance on the mCCT had a weak negative correlation with age (rho = -0.20) and a weak positive correlation with education (rho = 0.13), with an overall abnormal score (below the 5th percentile of the control population) being below 27 out of a total of 32. All three of the symptomatic mutation groups scored significantly lower than controls: MAPT mean 22.3 (standard deviation 8.0), GRN 24.4 (7.2), C9orf72 23.6 (6.5) and controls 30.2 (1.6). However, in the presymptomatic groups, only the late MAPT and late C9orf72 mutation groups scored lower than controls (28.8 (2.2) and 28.9 (2.5) respectively). Performance on the mCCT correlated strongly with temporal lobe volume in the symptomatic MAPT mutation group (rho > 0.80). In the C9orf72 group, mCCT score correlated with both bilateral temporal lobe volume (rho > 0.31) and bilateral frontal lobe volume (rho > 0.29), whilst in the GRN group mCCT score correlated only with left frontal lobe volume (rho = 0.48). This study provides evidence for presymptomatic impaired semantic knowledge in genetic FTD. The different neuroanatomical associations of the mCCT score may represent distinct cognitive processes causing deficits in different groups: loss of core semantic knowledge associated with temporal lobe atrophy (particularly in the MAPT group), and impaired executive control of semantic information associated with frontal lobe atrophy. Further studies will be helpful to address the longitudinal change in mCCT performance and the exact time at which presymptomatic impairment occurs.


Subject(s)
Cactaceae , Frontotemporal Dementia , Animals , C9orf72 Protein , Camelus , Frontotemporal Dementia/complications , Frontotemporal Dementia/genetics , Humans , Progranulins , Semantics
8.
Alzheimers Res Ther ; 13(1): 127, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34253227

ABSTRACT

BACKGROUND: Although social cognitive dysfunction is a major feature of frontotemporal dementia (FTD), it has been poorly studied in familial forms. A key goal of studies is to detect early cognitive impairment using validated measures in large patient cohorts. METHODS: We used the Revised Self-Monitoring Scale (RSMS) as a measure of socioemotional sensitivity in 730 participants from the genetic FTD initiative (GENFI) observational study: 269 mutation-negative healthy controls, 193 C9orf72 expansion carriers, 193 GRN mutation carriers and 75 MAPT mutation carriers. All participants underwent the standardised GENFI clinical assessment including the 'CDR® plus NACC FTLD' scale and RSMS. The RSMS total score and its two subscores, socioemotional expressiveness (EX score) and modification of self-presentation (SP score) were measured. Volumetric T1-weighted magnetic resonance imaging was available from 377 mutation carriers for voxel-based morphometry (VBM) analysis. RESULTS: The RSMS was decreased in symptomatic mutation carriers in all genetic groups but at a prodromal stage only in the C9orf72 (for the total score and both subscores) and GRN (for the modification of self-presentation subscore) groups. RSMS score correlated with disease severity in all groups. The VBM analysis implicated an overlapping network of regions including the orbitofrontal cortex, insula, temporal pole, medial temporal lobe and striatum. CONCLUSIONS: The RSMS indexes socioemotional impairment at an early stage of genetic FTD and may be a suitable outcome measure in forthcoming trials.


Subject(s)
Frontotemporal Dementia , C9orf72 Protein/genetics , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/genetics , Humans , Magnetic Resonance Imaging , Mutation/genetics , Progranulins/genetics , Social Cognition , tau Proteins/genetics
9.
Neurology ; 97(9): e941-e952, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34158384

ABSTRACT

BACKGROUND AND OBJECTIVE: Mutations in the MAPT gene cause frontotemporal dementia (FTD). Most previous studies investigating the neuroanatomical signature of MAPT mutations have grouped all different mutations together and shown an association with focal atrophy of the temporal lobe. The variability in atrophy patterns between each particular MAPT mutation is less well-characterized. We aimed to investigate whether there were distinct groups of MAPT mutation carriers based on their neuroanatomical signature. METHODS: We applied Subtype and Stage Inference (SuStaIn), an unsupervised machine learning technique that identifies groups of individuals with distinct progression patterns, to characterize patterns of regional atrophy in MAPT-associated FTD within the Genetic FTD Initiative (GENFI) cohort study. RESULTS: Eighty-two MAPT mutation carriers were analyzed, the majority of whom had P301L, IVS10+16, or R406W mutations, along with 48 healthy noncarriers. SuStaIn identified 2 groups of MAPT mutation carriers with distinct atrophy patterns: a temporal subtype, in which atrophy was most prominent in the hippocampus, amygdala, temporal cortex, and insula; and a frontotemporal subtype, in which atrophy was more localized to the lateral temporal lobe and anterior insula, as well as the orbitofrontal and ventromedial prefrontal cortex and anterior cingulate. There was one-to-one mapping between IVS10+16 and R406W mutations and the temporal subtype and near one-to-one mapping between P301L mutations and the frontotemporal subtype. There were differences in clinical symptoms and neuropsychological test scores between subtypes: the temporal subtype was associated with amnestic symptoms, whereas the frontotemporal subtype was associated with executive dysfunction. CONCLUSION: Our results demonstrate that different MAPT mutations give rise to distinct atrophy patterns and clinical phenotype, providing insights into the underlying disease biology and potential utility for patient stratification in therapeutic trials.


Subject(s)
Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Machine Learning , tau Proteins/genetics , Adult , Aged , Atrophy/genetics , Atrophy/pathology , Brain/pathology , Disease Progression , Female , Humans , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging , Male , Middle Aged , Mutation , Neuroimaging/methods
10.
Alzheimers Dement (Amst) ; 13(1): e12185, 2021.
Article in English | MEDLINE | ID: mdl-34027016

ABSTRACT

INTRODUCTION: We aimed to assess episodic memory in genetic frontotemporal dementia (FTD) with the Free and Cued Selective Reminding Test (FCSRT). METHODS: The FCSRT was administered in 417 presymptomatic and symptomatic mutation carriers (181 chromosome 9 open reading frame 72 [C9orf72], 163 progranulin [GRN], and 73 microtubule-associated protein tau [MAPT]) and 290 controls. Group differences and correlations with other neuropsychological tests were examined. We performed voxel-based morphometry to investigate the underlying neural substrates of the FCSRT. RESULTS: All symptomatic mutation carrier groups and presymptomatic MAPT mutation carriers performed significantly worse on all FCSRT scores compared to controls. In the presymptomatic C9orf72 group, deficits were found on all scores except for the delayed total recall task, while no deficits were found in presymptomatic GRN mutation carriers. Performance on the FCSRT correlated with executive function, particularly in C9orf72 mutation carriers, but also with memory and naming tasks in the MAPT group. FCSRT performance also correlated with gray matter volumes of frontal, temporal, and subcortical regions in C9orf72 and GRN, but mainly temporal areas in MAPT mutation carriers. DISCUSSION: The FCSRT detects presymptomatic deficits in C9orf72- and MAPT-associated FTD and provides important insight into the underlying cause of memory impairment in different forms of FTD.

11.
Article in English | MEDLINE | ID: mdl-33722819

ABSTRACT

INTRODUCTION: Structural brain imaging is paramount for the diagnosis of behavioural variant of frontotemporal dementia (bvFTD), but it has low sensitivity leading to erroneous or late diagnosis. METHODS: A total of 515 subjects from two different bvFTD cohorts (training and independent validation cohorts) were used to perform voxel-wise morphometric analysis to identify regions with significant differences between bvFTD and controls. A random forest classifier was used to individually predict bvFTD from deformation-based morphometry differences in isolation and together with semantic fluency. Tenfold cross validation was used to assess the performance of the classifier within the training cohort. A second held-out cohort of genetically confirmed bvFTD cases was used for additional validation. RESULTS: Average 10-fold cross-validation accuracy was 89% (82% sensitivity, 93% specificity) using only MRI and 94% (89% sensitivity, 98% specificity) with the addition of semantic fluency. In the separate validation cohort of definite bvFTD, accuracy was 88% (81% sensitivity, 92% specificity) with MRI and 91% (79% sensitivity, 96% specificity) with added semantic fluency scores. CONCLUSION: Our results show that structural MRI and semantic fluency can accurately predict bvFTD at the individual subject level within a completely independent validation cohort coming from a different and independent database.

12.
Neuroimage Clin ; 29: 102540, 2021.
Article in English | MEDLINE | ID: mdl-33418170

ABSTRACT

Mutations in the granulin gene (GRN) cause familial frontotemporal dementia. Understanding the structural brain changes in presymptomatic GRN carriers would enforce the use of neuroimaging biomarkers for early diagnosis and monitoring. We studied 100 presymptomatic GRN mutation carriers and 94 noncarriers from the Genetic Frontotemporal dementia initiative (GENFI), with MRI structural images. We analyzed 3T MRI structural images using the FreeSurfer pipeline to calculate the whole brain cortical thickness (CTh) for each subject. We also perform a vertex-wise general linear model to assess differences between groups in the relationship between CTh and diverse covariables as gender, age, the estimated years to onset and education. We also explored differences according to TMEM106B genotype, a possible disease modifier. Whole brain CTh did not differ between carriers and noncarriers. Both groups showed age-related cortical thinning. The group-by-age interaction analysis showed that this age-related cortical thinning was significantly greater in GRN carriers in the left superior frontal cortex. TMEM106B did not significantly influence the age-related cortical thinning. Our results validate and expand previous findings suggesting an increased CTh loss associated with age and estimated proximity to symptoms onset in GRN carriers, even before the disease onset.


Subject(s)
Cerebral Cortical Thinning , Frontotemporal Dementia , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/genetics , Granulins , Heterozygote , Humans , Membrane Proteins/genetics , Mutation/genetics , Nerve Tissue Proteins/genetics , Progranulins
14.
Mov Disord ; 36(2): 503-508, 2021 02.
Article in English | MEDLINE | ID: mdl-33078859

ABSTRACT

BACKGROUND: Outcomes are unpredictable for neurological presentations of Wilson's disease (WD). Dosing regimens for chelation therapy vary and monitoring depends on copper indices, which do not reflect end-organ damage. OBJECTIVE: To identify a biomarker for neurological involvement in WD. METHODS: Neuronal and glial-specific proteins were measured in plasma samples from 40 patients and 38 age-matched controls. Patients were divided into neurological or hepatic presentations and those with recent neurological presentations or deterioration associated with non-adherence were subcategorized as having active neurological disease. Unified WD Rating Scale scores and copper indices were recorded. RESULTS: Unlike copper indices, neurofilament light (NfL) concentrations were higher in neurological than hepatic presentations. They were also higher in those with active neurological disease when controlling for severity and correlated with neurological examination subscores in stable patients. CONCLUSION: NfL is a biomarker of neurological involvement with potential use in guiding chelation therapy and clinical trials for novel treatments. © 2020 University College London. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Subject(s)
Hepatolenticular Degeneration , Biomarkers , Copper/analysis , Humans , Intermediate Filaments/chemistry , London , Plasma/chemistry
15.
Brain Commun ; 2(2)2020 07.
Article in English | MEDLINE | ID: mdl-33210084

ABSTRACT

Frontotemporal dementia is a heterogeneous neurodegenerative disorder characterized by neuronal loss in the frontal and temporal lobes. Despite progress in understanding which genes are associated with the aetiology of frontotemporal dementia, the biological basis of how mutations in these genes lead to cell loss in specific cortical regions remains unclear. In this work we combined gene expression data for 16,772 genes from the Allen Institute for Brain Science atlas with brain maps of gray matter atrophy in symptomatic C9orf72, GRN and MAPT mutation carriers obtained from the Genetic Frontotemporal dementia Initiative study. No significant association was seen between C9orf72, GRN and MAPT expression and the atrophy patterns in the respective genetic groups. After adjusting for spatial autocorrelation, between 1,000 and 5,000 genes showed a negative or positive association with the atrophy pattern within each individual genetic group, with the most significantly associated genes being TREM2, SSBP3 and GPR158 (negative association in C9orf72, GRN and MAPT respectively) and RELN, MXRA8 and LPA (positive association in C9orf72, GRN and MAPT respectively). An overrepresentation analysis identified a negative association with genes involved in mitochondrial function, and a positive association with genes involved in vascular and glial cell function in each of the genetic groups. A set of 423 and 700 genes showed significant positive and negative association, respectively, with atrophy patterns in all three maps. The gene set with increased expression in spared cortical regions was enriched for neuronal and microglial genes, while the gene set with increased expression in atrophied regions was enriched for astrocyte and endothelial cell genes. Our analysis suggests that these cell types may play a more active role in the onset of neurodegeneration in frontotemporal dementia than previously assumed, and in the case of the positively-associated cell marker genes, potentially through emergence of neurotoxic astrocytes and alteration in the blood-brain barrier respectively.

16.
Cortex ; 133: 384-398, 2020 12.
Article in English | MEDLINE | ID: mdl-33221702

ABSTRACT

A key symptom of frontotemporal dementia (FTD) is difficulty interacting socially with others. Social cognition problems in FTD include impaired emotion processing and theory of mind difficulties, and whilst these have been studied extensively in sporadic FTD, few studies have investigated them in familial FTD. Facial Emotion Recognition (FER) and Faux Pas (FP) recognition tests were used to study social cognition within the Genetic Frontotemporal Dementia Initiative (GENFI), a large familial FTD cohort of C9orf72, GRN, and MAPT mutation carriers. 627 participants undertook at least one of the tasks, and were separated into mutation-negative healthy controls, presymptomatic mutation carriers (split into early and late groups) and symptomatic mutation carriers. Groups were compared using a linear regression model with bootstrapping, adjusting for age, sex, education, and for the FP recognition test, language. Neural correlates of social cognition deficits were explored using a voxel-based morphometry (VBM) study. All three of the symptomatic genetic groups were impaired on both tasks with no significant difference between them. However, prior to onset, only the late presymptomatic C9orf72 mutation carriers on the FER test were impaired compared to the control group, with a subanalysis showing differences particularly in fear and sadness. The VBM analysis revealed that impaired social cognition was mainly associated with a left hemisphere predominant network of regions involving particularly the striatum, orbitofrontal cortex and insula, and to a lesser extent the inferomedial temporal lobe and other areas of the frontal lobe. In conclusion, theory of mind and emotion processing abilities are impaired in familial FTD, with early changes occurring prior to symptom onset in C9orf72 presymptomatic mutation carriers. Future work should investigate how performance changes over time, in order to gain a clearer insight into social cognitive impairment over the course of the disease.


Subject(s)
Frontotemporal Dementia , C9orf72 Protein/genetics , Frontotemporal Dementia/genetics , Humans , Magnetic Resonance Imaging , Mutation , Progranulins/genetics , Social Cognition
17.
J Neurol Neurosurg Psychiatry ; 91(12): 1325-1328, 2020 12.
Article in English | MEDLINE | ID: mdl-32759310

ABSTRACT

OBJECTIVE: Frontotemporal dementia (FTD) is typically associated with changes in behaviour, language and movement. However, recent studies have shown that patients can also develop an abnormal response to pain, either heightened or diminished. We aimed to investigate this symptom in mutation carriers within the Genetic FTD Initiative (GENFI). METHODS: Abnormal responsiveness to pain was measured in 462 GENFI participants: 281 mutation carriers and 181 mutation-negative controls. Changes in responsiveness to pain were scored as absent (0), questionable or very mild (0.5), mild (1), moderate (2) or severe (3). Mutation carriers were classified into C9orf72 (104), GRN (128) and MAPT (49) groups, and into presymptomatic and symptomatic stages. An ordinal logistic regression model was used to compare groups, adjusting for age and sex. Voxel-based morphometry was performed to identify neuroanatomical correlates of abnormal pain perception. RESULTS: Altered responsiveness to pain was present to a significantly greater extent in symptomatic C9orf72 expansion carriers than in controls: mean score 0.40 (SD 0.71) vs 0.00 (0.04), reported in 29% vs 1%. No significant differences were seen between the other symptomatic groups and controls, or any of the presymptomatic mutation carriers and controls. Neural correlates of altered pain perception in C9orf72 expansion carriers were the bilateral thalamus and striatum as well as a predominantly right-sided network of regions involving the orbitofrontal cortex, inferomedial temporal lobe and cerebellum. CONCLUSION: Changes in pain perception are a feature of C9orf72 expansion carriers, likely representing a disruption in somatosensory, homeostatic and semantic processing, underpinned by atrophy in a thalamo-cortico-striatal network.


Subject(s)
C9orf72 Protein/genetics , Cerebral Cortex/diagnostic imaging , Corpus Striatum/diagnostic imaging , Frontotemporal Dementia/physiopathology , Pain Perception , Perceptual Disorders/physiopathology , Thalamus/diagnostic imaging , Adult , Aged , Asymptomatic Diseases , Atrophy/diagnostic imaging , Atrophy/genetics , Atrophy/physiopathology , Cerebellum/diagnostic imaging , Cerebellum/pathology , Cerebral Cortex/pathology , Cohort Studies , Corpus Striatum/pathology , DNA Repeat Expansion , Female , Frontotemporal Dementia/diagnostic imaging , Frontotemporal Dementia/genetics , Humans , Logistic Models , Magnetic Resonance Imaging , Male , Middle Aged , Mutation , Perceptual Disorders/diagnostic imaging , Perceptual Disorders/genetics , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/pathology , Progranulins/genetics , Temporal Lobe/diagnostic imaging , Temporal Lobe/pathology , Thalamus/pathology , tau Proteins/genetics
18.
J Neurol Neurosurg Psychiatry ; 91(6): 612-621, 2020 06.
Article in English | MEDLINE | ID: mdl-32273328

ABSTRACT

INTRODUCTION: Synapse dysfunction is emerging as an early pathological event in frontotemporal dementia (FTD), however biomarkers are lacking. We aimed to investigate the value of cerebrospinal fluid (CSF) neuronal pentraxins (NPTXs), a family of proteins involved in homeostatic synapse plasticity, as novel biomarkers in genetic FTD. METHODS: We included 106 presymptomatic and 54 symptomatic carriers of a pathogenic mutation in GRN, C9orf72 or MAPT, and 70 healthy non-carriers participating in the Genetic Frontotemporal dementia Initiative (GENFI), all of whom had at least one CSF sample. We measured CSF concentrations of NPTX2 using an in-house ELISA, and NPTX1 and NPTX receptor (NPTXR) by Western blot. We correlated NPTX2 with corresponding clinical and neuroimaging datasets as well as with CSF neurofilament light chain (NfL) using linear regression analyses. RESULTS: Symptomatic mutation carriers had lower NPTX2 concentrations (median 643 pg/mL, IQR (301-872)) than presymptomatic carriers (1003 pg/mL (624-1358), p<0.001) and non-carriers (990 pg/mL (597-1373), p<0.001) (corrected for age). Similar results were found for NPTX1 and NPTXR. Among mutation carriers, NPTX2 concentration correlated with several clinical disease severity measures, NfL and grey matter volume of the frontal, temporal and parietal lobes, insula and whole brain. NPTX2 predicted subsequent decline in phonemic verbal fluency and Clinical Dementia Rating scale plus FTD modules. In longitudinal CSF samples, available in 13 subjects, NPTX2 decreased around symptom onset and in the symptomatic stage. DISCUSSION: We conclude that NPTX2 is a promising synapse-derived disease progression biomarker in genetic FTD.


Subject(s)
C-Reactive Protein/cerebrospinal fluid , Frontotemporal Dementia/diagnosis , Nerve Tissue Proteins/cerebrospinal fluid , Adult , Aged , Biomarkers/cerebrospinal fluid , Disease Progression , Female , Frontotemporal Dementia/cerebrospinal fluid , Frontotemporal Dementia/genetics , Heterozygote , Humans , Male , Middle Aged , Neurofilament Proteins/cerebrospinal fluid
19.
Ann Neurol ; 88(1): 113-122, 2020 07.
Article in English | MEDLINE | ID: mdl-32285980

ABSTRACT

OBJECTIVE: C9orf72 expansion is the most common genetic cause of frontotemporal dementia (FTD). We examined aging trajectories of cortical thickness (CTh) and surface area in C9orf72 expansion adult carriers compared to healthy controls to characterize preclinical cerebral changes leading to symptoms. METHODS: Data were obtained from the Genetic Frontotemporal Dementia Initiative. T1-weighted magnetic resonance imaging scans were processed with CIVET 2.1 to extract vertex-wide CTh and cortical surface area (CSA). Symptomatic and presymptomatic subjects were compared to age-matched controls using mixed-effects models, controlling for demographic variables. Aging trajectories were compared between carriers and noncarriers by testing the "age by genetic status" interaction. False discovery rate corrections were applied to all vertex-wide analyses. RESULTS: The sample included 640 scans from 386 subjects, including 54 symptomatic C9orf72 carriers (72.2% behavioral variant FTD), 83 asymptomatic carriers, and 249 controls (age range = 18-86 years). Symptomatic carriers showed fairly symmetric reduction in CTh/CSA in most of the frontal lobes, in addition to large temporoparietal areas. Presymptomatic subjects had reduced CTh/CSA in more restricted areas of the medial frontoparietal lobes, in addition to scattered lateral frontal, parietal, and temporal areas. These differences were explained by faster cortical thinning linearly throughout adulthood in a similar anatomical distribution, with differences emerging in the early 30s. CSA reduction was also faster in mutation carriers predominantly in the ventrofrontal regions. INTERPRETATION: C9orf72 mutation carriers have faster cortical thinning and surface loss throughout adulthood in regions that show atrophy in symptomatic subjects. This suggests that the pathogenic effects of the mutation lead to structural cerebral changes decades prior to symptoms. ANN NEUROL 2020 ANN NEUROL 2020;88:113-122.


Subject(s)
C9orf72 Protein/genetics , Cerebral Cortex/diagnostic imaging , DNA Repeat Expansion , Frontotemporal Dementia/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Atrophy/diagnostic imaging , Atrophy/genetics , Female , Frontotemporal Dementia/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Young Adult
20.
J Neurol Neurosurg Psychiatry ; 91(3): 263-270, 2020 03.
Article in English | MEDLINE | ID: mdl-31937580

ABSTRACT

BACKGROUND: There are few validated fluid biomarkers in frontotemporal dementia (FTD). Glial fibrillary acidic protein (GFAP) is a measure of astrogliosis, a known pathological process of FTD, but has yet to be explored as potential biomarker. METHODS: Plasma GFAP and neurofilament light chain (NfL) concentration were measured in 469 individuals enrolled in the Genetic FTD Initiative: 114 C9orf72 expansion carriers (74 presymptomatic, 40 symptomatic), 119 GRN mutation carriers (88 presymptomatic, 31 symptomatic), 53 MAPT mutation carriers (34 presymptomatic, 19 symptomatic) and 183 non-carrier controls. Biomarker measures were compared between groups using linear regression models adjusted for age and sex with family membership included as random effect. Participants underwent standardised clinical assessments including the Mini-Mental State Examination (MMSE), Frontotemporal Lobar Degeneration-Clinical Dementia Rating scale and MRI. Spearman's correlation coefficient was used to investigate the relationship of plasma GFAP to clinical and imaging measures. RESULTS: Plasma GFAP concentration was significantly increased in symptomatic GRN mutation carriers (adjusted mean difference from controls 192.3 pg/mL, 95% CI 126.5 to 445.6), but not in those with C9orf72 expansions (9.0, -61.3 to 54.6), MAPT mutations (12.7, -33.3 to 90.4) or the presymptomatic groups. GFAP concentration was significantly positively correlated with age in both controls and the majority of the disease groups, as well as with NfL concentration. In the presymptomatic period, higher GFAP concentrations were correlated with a lower cognitive score (MMSE) and lower brain volume, while in the symptomatic period, higher concentrations were associated with faster rates of atrophy in the temporal lobe. CONCLUSIONS: Raised GFAP concentrations appear to be unique to GRN-related FTD, with levels potentially increasing just prior to symptom onset, suggesting that GFAP may be an important marker of proximity to onset, and helpful for forthcoming therapeutic prevention trials.


Subject(s)
C9orf72 Protein/genetics , Frontotemporal Dementia/blood , Frontotemporal Dementia/genetics , Glial Fibrillary Acidic Protein/blood , Progranulins/genetics , tau Proteins/genetics , Adult , Aged , Biomarkers/blood , Case-Control Studies , Female , Humans , Male , Middle Aged , Mutation/genetics , Neurofilament Proteins/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...