Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 175
Filter
1.
Appl Biosci (Basel) ; 3(2): 233-249, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38835931

ABSTRACT

Synucleinopathies, typified by Parkinson's disease (PD), entail the accumulation of α-synuclein (αSyn) aggregates in nerve cells. Various αSyn mutants, including the αSyn A53T variant linked to early-onset PD, increase the propensity for αSyn aggregate formation. In addition to disrupting protein homeostasis and inducing proteostatic stress, the aggregation of αSyn in PD is associated with an imbalance in iron metabolism, which increases the generation of reactive oxygen species and causes oxidative stress. This study explored the impact of αSyn A53T expression in transgenic hairy roots of four medicinal plants (Lobelia cardinalis, Artemisia annua, Salvia miltiorrhiza, and Polygonum multiflorum). In all tested plants, αSyn A53T expression triggered proteotoxic stress and perturbed iron homeostasis, mirroring the molecular profile observed in human and animal nerve cells. In addition to the common eukaryotic defense mechanisms against proteostatic and oxidative stresses, a plant stress response generally includes the biosynthesis of a diverse set of protective secondary metabolites. Therefore, the hairy root cultures expressing αSyn A53T offer a platform for identifying secondary metabolites that can ameliorate the effects of αSyn, thereby aiding in the development of possible PD treatments and/or treatments of synucleinopathies.

2.
Talanta ; 268(Pt 1): 125302, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37826935

ABSTRACT

Epilepsy is a prevalent neurological disorder with a complex pathogenesis and unpredictable nature, presenting limited treatment options in >30 % of affected individuals. Neurometabolic abnormalities have been observed in epilepsy patients, suggesting a disruption in the coupling between neural activity and energy metabolism in the brain. In this study, we employed amperometric biosensors based on a modified carbon fiber microelectrode platform to directly and continuously measure lactate and oxygen dynamics in the brain extracellular space. These biosensors demonstrated high sensitivity, selectivity, and rapid response time, enabling in vivo measurements with high temporal and spatial resolution. In vivo recordings in the cortex of anaesthetized rats revealed rapid and multiphasic fluctuations in extracellular lactate and oxygen levels following neuronal stimulation with high potassium. Furthermore, real-time measurement of lactate and oxygen concentration dynamics concurrently with network electrical activity during status epilepticus induced by 4-aminopyridine (4-AP) demonstrated phasic changes in lactate levels that correlated with bursts of electrical activity, while tonic levels of lactate remained stable during seizures. This study highlights the complex interplay between lactate dynamics, electrical activity, and oxygen utilization in epileptic seizures.


Subject(s)
Biosensing Techniques , Epilepsy , Status Epilepticus , Humans , Rats , Animals , Lactic Acid/metabolism , Oxygen , Status Epilepticus/chemically induced , Status Epilepticus/metabolism , Brain/metabolism , Seizures/metabolism , 4-Aminopyridine
3.
J Clin Med ; 12(19)2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37834764

ABSTRACT

Parkinson's disease (PD) is a severe neurological disease for which there is no effective treatment or cure, and therefore it remains an unmet need in medicine. We present data from four participants who received autologous transplantation of small pieces of sural nerve tissue into either the basal forebrain containing the nucleus basalis of Meynert (NBM) or the midbrain substantia nigra (SN). The grafts did not exhibit significant cell death or severe host-tissue reaction up to 55 months post-grafting and contained peripheral cells. Dopaminergic neurites showed active growth in the graft area and into the graft in the SN graft, and cholinergic neurites were abundant near the graft in the NBM. These results provide a histological basis for changes in clinical features after autologous peripheral nerve tissue grafting into the NBM or SN in PD.

4.
J Parkinsons Dis ; 13(3): 421-426, 2023.
Article in English | MEDLINE | ID: mdl-36938741

ABSTRACT

We sought to design a data visualization platform to represent the Movement Disorder Society- Unified Parkinson's Disease Rating Scale (MDS-UPDRS) item scores in an easy-to-use display without modification of the raw data or summary scores. Score items for Parts I, II, and IV were arranged as separate inline blocks, while Part III item blocks were arranged in an anatomical fashion. A color scale was created to represent symptom severity and changes observed from one exam to another. We have found the visualization helpful for quickly defining the most troublesome symptoms and their anatomical location enabling communication of the results and interpretations.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/diagnostic imaging , Severity of Illness Index , Societies, Medical , Mental Status and Dementia Tests
5.
Exp Neurol ; 363: 114356, 2023 05.
Article in English | MEDLINE | ID: mdl-36841465

ABSTRACT

Monoamine oxidase (MAO) is an enzyme located on the outer mitochondrial membrane that metabolizes amine substrates like serotonin, norepinephrine and dopamine. MAO inhibitors (MAOIs) are frequently utilized to treat disorders such as major depression or Parkinson's disease (PD), though their effects on brain mitochondrial bioenergetics are unclear. These studies measured bioenergetic activity in mitochondria isolated from the mouse cortex in the presence of inhibitors of either MAO-A, MAO-B, or both isoforms. We found that only 10 µM clorgyline, the selective inhibitor of MAO-A and not MAO-B, increased mitochondrial oxygen consumption rate in State V(CI) respiration compared to vehicle treatment. We then assessed mitochondrial bioenergetics, reactive oxygen species (ROS) production, and Electron Transport Chain (ETC) complex function in the presence of 0, 5, 10, 20, 40, or 80 µM of clorgyline to determine if this change was dose-dependent. The results showed increased oxygen consumption rates across the majority of respiration states in mitochondria treated with 5, 10, or 20 µM with significant bioenergetic inhibition at 80 µM clorgyline. Next, we assessed mitochondrial ROS production in the presence of the same concentrations of clorgyline in two different states: high mitochondrial membrane potential (ΔΨm) induced by oligomycin and low ΔΨm induced by carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP). There were no changes in ROS production in the presence of 5, 10, 20, or 40 µM clorgyline compared to vehicle after the addition of oligomycin or FCCP. There was a significant increase in mitochondrial ROS in the presence of 80 µM clorgyline after FCCP addition, as well as reduced Complex I and Complex II activities, which are consistent with inhibition of bioenergetics seen at this dose. There were no changes in Complex I, II, or IV activities in mitochondria treated with low doses of clorgyline. These studies shed light on the direct effect of MAO-A inhibition on brain mitochondrial bioenergetic function, which may be a beneficial outcome for those taking these medications.


Subject(s)
Monoamine Oxidase Inhibitors , Monoamine Oxidase , Mice , Animals , Monoamine Oxidase/metabolism , Clorgyline/pharmacology , Clorgyline/metabolism , Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone , Reactive Oxygen Species/metabolism , Monoamine Oxidase Inhibitors/pharmacology , Mitochondria/metabolism , Respiration
6.
PLoS One ; 17(11): e0260998, 2022.
Article in English | MEDLINE | ID: mdl-36417411

ABSTRACT

Regeneration after severe peripheral nerve injury is often poor. Knowledge of human nerve regeneration and the growth microenvironment is greatly lacking. We aimed to identify the regenerative proteins in human peripheral nerve by comparing the proteome before and after a transection injury. In a unique study design, we collected closely matched samples of naïve and injured sural nerve. Naïve and injured (two weeks after injury) samples were analyzed using mass spectrometry and immunoassays. We found significantly altered levels following the nerve injury. Mass spectrometry revealed that injury samples had 568 proteins significantly upregulated and 471 significantly downregulated compared to naïve samples (q-value ≤ 0.05 and Z ≥ |2| (log2)). We used Gene Ontology (GO) pathway overrepresentation analysis to highlight groups of proteins that were significantly upregulated or downregulated with injury-induced degeneration and regeneration. Significant protein changes in key pathways were identified including growth factor levels, Schwann cell de-differentiation, myelination downregulation, epithelial-mesenchymal transition (EMT), and axonal regeneration pathways. The proteomes of the uninjured nerve compared to the degenerating/regenerating nerve may reveal biomarkers to aid in the development of repair strategies such as infusing supplemental trophic factors and in monitoring neural tissue regeneration.


Subject(s)
Peripheral Nerve Injuries , Proteome , Humans , Sural Nerve , Nerve Regeneration/physiology , Peripheral Nerves
7.
Cell Transplant ; 31: 9636897221123515, 2022.
Article in English | MEDLINE | ID: mdl-36169034

ABSTRACT

One promising strategy in cell therapies for Parkinson's disease (PD) is to harness a patient's own cells to provide neuroprotection in areas of the brain affected by neurodegeneration. No treatment exists to replace cells in the brain. Thus, our goal has been to support sick neurons and slow neurodegeneration by transplanting living repair tissue from the peripheral nervous system into the substantia nigra of those with PD. Our group has pioneered the transplantation of transection-activated sural nerve fascicles into the brain of human subjects with PD. Our experience in sural nerve transplantation has supported the safety and feasibility of this approach. As part of a paradigm to assess the reparative properties of human sural nerve following a transection injury, we collected nerve tissue approximately 2 weeks after sural nerve transection for immunoassays from 15 participants, and collected samples from two additional participants for single nuclei RNA sequencing. We quantified the expression of key neuroprotective and select anti-apoptotic genes along with their corresponding protein levels using immunoassays. The single nuclei data clustered into 10 distinctive groups defined on the basis of previously published cell type-specific genes. Transection-induced reparative peripheral nerve tissue showed RNA expression of neuroprotective factors and anti-apoptotic factors across multiple cell types after nerve injury induction. Key proteins of interest (BDNF, GDNF, beta-NGF, PDGFB, and VEGF) were upregulated in reparative tissue. These results provide insight on this repair tissue's utility as a neuroprotective cell therapy.


Subject(s)
Nerve Growth Factor , Parkinson Disease , Brain-Derived Neurotrophic Factor , Cell- and Tissue-Based Therapy , Glial Cell Line-Derived Neurotrophic Factor/genetics , Humans , Parkinson Disease/therapy , Proto-Oncogene Proteins c-sis , RNA , Vascular Endothelial Growth Factor A
8.
BMJ Neurol Open ; 4(2): e000301, 2022.
Article in English | MEDLINE | ID: mdl-35949912

ABSTRACT

Objective: To evaluate the interim feasibility, safety and clinical measures data of direct delivery of regenerating peripheral nerve tissue (PNT) to the substantia nigra (SN) in participants with Parkinson's disease (PD). Methods: Eighteen (13 men/5 women) participants were unilaterally implanted with PNT to the SN, contralateral to the most affected side during the same surgery they were receiving deep brain stimulation (DBS) surgery. Autologous PNT was collected from the sural nerve. Participants were followed for safety and clinical outcomes for 2 years (including off-state Unified Parkinson's Disease Rating Scale (UPDRS) Part III assessments) with study visits every 6 months. Results: All 18 participants scheduled to receive PNT implantation received targeted delivery to the SN in addition to their DBS. All subjects were discharged the following day except for two: post-op day 2; post-op day 3. The most common study-related adverse events were hypoaesthesia and hyperaesthesias to the lateral aspect of the foot and ankle of the biopsied nerve (6 of 18 participants experienced). Clinical measures did not identify any hastening of PD measures providing evidence of safety and tolerability. Off-state UPDRS Part III mean difference scores were reduced at 12 months compared with baseline (difference=-8.1, 95% CI -2.4 to -13.9 points, p=0.005). No complications involving dyskinesias were observed. Conclusions: Targeting the SN for direct delivery of PNT was feasible with no serious adverse events related to the study intervention. Interim clinical outcomes show promising results meriting continued examination of this investigational approach. Trial registration number: NCT02369003.

9.
J Neurosci Methods ; 378: 109643, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35691412

ABSTRACT

BACKGROUND: Limitations have previously existed for the use of brain infusion catheters with extended delivery port designs to achieve larger distribution volumes using convection-enhanced delivery (CED), due to poor transmittance of materials and uncontrolled backflow. The goal of this study was to evaluate a novel brain catheter that has been designed to allow for extended delivery and larger distribution volumes with limited backflow of fluid. It was characterized using a broad range of therapeutic pore sizes both for transmittance across the membranes to address possible occlusion and for distribution in short term infusion studies, both in-vitro in gels and in-vivo in canines. METHODS: Brain catheters with pore sizes of 10, 12, 15, 20 and 30 µm were evaluated using three infusates prepared in 0.9% sterile saline with diameters approximating 2, 5, and 30 nm, respectively. Magnevist™ was chosen as the small molecule infusate to mimic low-molecular weight therapeutics. Galbumin™ served as a surrogate for an assortment of proteins used for brain cancer and Parkinson's disease. Gadoluminate™ was used to assess the distribution of large therapeutics, such as adeno-associated viral particles and synthetic nanoparticles. The transmittance of the medium and large tracer particles through catheters of different pore size (15, 20 and 30 µm) was measured by MRI and compared with the measured concentration of the control. Infusions into 0.2% agarose gels were performed in order to evaluate differences in transmittance and distribution of the small, medium, and large tracer particles through catheters with different pore sizes (10, 12, 15, 20 and 30 µm). In-vivo infusions were performed in the canine in order to evaluate the ability of the catheter to infuse the small, medium, and large tracer particles into brain parenchyma at high flow rates through catheters with different pore sizes (10, 15, and 20 µm). Two catheters were stereotactically inserted into the brain for infusion, one per hemisphere, in each animal (N = 6). RESULTS: The transmittance of Galbumin and Gadoluminate across the catheter membrane surface was 100% to within the accuracy of the measurements. There was no evidence of any blockage or retardation of any of the infusates. Catheter pore size did not appear to significantly affect transmittance or distribution in gels of any of the molecule sizes in the range of catheter pore sizes tested. There were differences in the distributions between the different tracer molecules: Magnevist produced relatively large distributions, followed by Gadoluminate and Galbumin. We observed no instances of uncontrolled backflow in a total of 12 in-vivo infusions. In addition, several of the infusions resulted in substantial amounts remaining in tissue. We expect the in-tissue distributions to be substantially improved in the larger human brain. COMPARISON WITH EXISTING METHODS: The new porous brain catheter performed well in terms of both backflow and intraparenchymal infusion of molecules of varying size in the canine brain under CED flow conditions. CONCLUSIONS: Overall, the data presented in this report support that the novel porous brain catheter can deliver therapeutics of varying sizes at high infusion rates in the brain parenchyma, and resist backflow that can compromise the efficacy of CED therapy. Additional work is needed to further characterize the brain catheter, including animal toxicity studies of chronically implanted brain catheters to lay the foundation for its use in the clinic.


Subject(s)
Catheters , Drug Delivery Systems , Animals , Brain/diagnostic imaging , Convection , Dogs , Drug Delivery Systems/methods , Gels , Humans , Magnetic Resonance Imaging , Porosity
10.
J Biotechnol ; 342: 28-35, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34648893

ABSTRACT

The dopamine transporter (DAT) is targeted in substance use disorders (SUDs), and "non-classical"" DAT inhibitors with low abuse potential are therapeutic candidates. Lobinaline, from Lobelia cardinalis, is an atypical DAT inhibitor lead. Chemical synthesis of lobinaline is challenging; thus, "target-directed evolution" was used for lead optimization. A target protein is expressed in plant cells, and a mutant cell population is selected under conditions where target protein functional inhibition confers a survival advantage. Surviving mutants are "mined" for the targeted activity. Applied to a mutant L. cardinalis cell population expressing the human DAT, we identified 20 mutants overproducing DAT inhibitors. Microanalysis prioritized novel lobinaline derivatives, and we first investigated the more water-soluble lobinaline N-oxide. It inhibited rat synaptosomal [3H]DA uptake with an IC50 similar to lobinaline. Against repeated DA microinjections into the rat striatum, lobinaline produced transient DA clearance reductions. In contrast, lobinaline N-oxide prolongingly increased DA peak amplitudes, particularly in the ventral striatum. Lobinaline N-oxide also produced complex changes in post-peak DA clearance inconsistent with simple DAT inhibition. This unusual DAT interaction may prove therapeutically useful for treating SUDs. This study demonstrates the value of target-directed evolution of plant cells for optimizing lead compounds difficult to synthesize chemically.


Subject(s)
Dopamine Plasma Membrane Transport Proteins , Lobelia , Animals , Corpus Striatum , Dopamine , Dopamine Plasma Membrane Transport Proteins/genetics , Lobelia/genetics , Rats , Synaptosomes
11.
Brain Sci ; 11(4)2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33921079

ABSTRACT

BACKGROUND: The efficacy of deep brain stimulation (DBS) and dopaminergic therapy is known to decrease over time. Hence, a new investigational approach combines implanting autologous injury-activated peripheral nerve grafts (APNG) at the time of bilateral DBS surgery to the globus pallidus interna. OBJECTIVES: In a study where APNG was unilaterally implanted into the substantia nigra, we explored the effects on clinical gait and balance assessments over two years in 14 individuals with Parkinson's disease. METHODS: Computerized gait and balance evaluations were performed without medication, and stimulation was in the off state for at least 12 h to best assess the role of APNG implantation alone. We hypothesized that APNG might improve gait and balance deficits associated with PD. RESULTS: While people with a degenerative movement disorder typically worsen with time, none of the gait parameters significantly changed across visits in this 24 month study. The postural stability item in the UPDRS did not worsen from baseline to the 24-month follow-up. However, we measured gait and balance improvements in the two most affected individuals, who had moderate PD. In these two individuals, we observed an increase in gait velocity and step length that persisted over 6 and 24 months. CONCLUSIONS: Participants did not show worsening of gait and balance performance in the off therapy state two years after surgery, while the two most severely affected participants showed improved performance. Further studies may better address the long-term maintanenace of these results.

12.
J Neurosci Methods ; 349: 109020, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33285151

ABSTRACT

BACKGROUND: Convection Enhanced Delivery (CED) into targeted brain areas has been tested in animal models and clinical trials for the treatment of various neurological diseases. NEW METHOD: We used a series of techniques, to in effect, maintain positive pressure inside the catheter relative to the outside, that included a hollow stylet, a high volume bolus of solution to clear the line, a low and slow continuous flow rate during implantation, and heat sealing the catheter at the time of implantation. RESULTS: 120 catheters implanted into brain parenchyma of 89 adult female rhesus monkeys across four sets of experiments. After experiencing a high delivery failure rate - non patent catheters - (19 %) because of tissue entrapment and debris and/or blood clots in the catheter tip, we developed modifications, including increasing the bolus infusion volume from 10 to 20 µl such that by the third experiment, the failure rate was 8 % (1 of 12 implants). Increasing the bolus volume to 100 µl and maintaining positive pressure in the catheter during preparation and implantation yielded a failure rate of 0 % (0/12 implants) by the fourth experiment. COMPARISON WITH EXISTING METHODS: We provide a retrospective analysis to reveal how several different manipulations affect catheter patency and how post-op MRI examination is essential for assessing catheter patency in situ. CONCLUSIONS: The results of the present study identified that the main cause of the catheter blockages were clots that rendered the catheter non-patent. We resolved this by modifying the surgical procedures that prevented these clots from forming.


Subject(s)
Neurosurgery , Animals , Brain/diagnostic imaging , Catheters , Convection , Drug Delivery Systems , Female , Magnetic Resonance Imaging , Retrospective Studies
14.
Micromachines (Basel) ; 11(7)2020 Jun 28.
Article in English | MEDLINE | ID: mdl-32605324

ABSTRACT

The intracranial measurement of local cerebral tissue oxygen levels-PbtO2-has become a useful tool for the critical care unit to investigate severe trauma and ischemia injury in patients. Our preliminary work in animal models supports the hypothesis that multi-site depth electrode recording of PbtO2 may give surgeons and critical care providers needed information about brain viability and the capacity for better recovery. Here, we present a surface morphology characterization and an electrochemical evaluation of the analytical properties toward oxygen detection of an FDA-approved, commercially available, clinical grade depth recording electrode comprising 12 Pt recording contacts. We found that the surface of the recording sites is composed of a thin film of smooth Pt and that the electrochemical behavior evaluated by cyclic voltammetry in acidic and neutral electrolyte is typical of polycrystalline Pt surface. The smoothness of the Pt surface was further corroborated by determination of the electrochemical active surface, confirming a roughness factor of 0.9. At an optimal working potential of -0.6 V vs. Ag/AgCl, the sensor displayed suitable values of sensitivity and limit of detection for in vivo PbtO2 measurements. Based on the reported catalytical properties of Pt toward the electroreduction reaction of O2, we propose that these probes could be repurposed for multisite monitoring of PbtO2 in vivo in the human brain.

15.
Cell Transplant ; 29: 963689720926157, 2020.
Article in English | MEDLINE | ID: mdl-32425114

ABSTRACT

The development of regenerative therapies for central nervous system diseases can likely benefit from an understanding of the peripheral nervous system repair process, particularly in identifying potential gene pathways involved in human nerve repair. This study employed RNA sequencing (RNA-seq) technology to analyze the whole transcriptome profile of the human peripheral nerve in response to an injury. The distal sural nerve was exposed, completely transected, and a 1 to 2 cm section of nerve fascicles was collected for RNA-seq from six participants with Parkinson's disease, ranging in age between 53 and 70 yr. Two weeks after the initial injury, another section of the nerve fascicles of the distal and pre-degenerated stump of the nerve was dissected and processed for RNA-seq studies. An initial analysis between the pre-lesion status and the postinjury gene expression revealed 3,641 genes that were significantly differentially expressed. In addition, the results support a clear transdifferentiation process that occurred by the end of the 2-wk postinjury. Gene ontology (GO) and hierarchical clustering were used to identify the major signaling pathways affected by the injury. In contrast to previous nonclinical studies, important changes were observed in molecular pathways related to antiapoptotic signaling, neurotrophic factor processes, cell motility, and immune cell chemotactic signaling. The results of our current study provide new insights regarding the essential interactions of different molecular pathways that drive neuronal repair and axonal regeneration in humans.


Subject(s)
Nerve Regeneration/genetics , Peripheral Nerve Injuries/genetics , Sequence Analysis, RNA/methods , Aged , Humans , Middle Aged
16.
J Neurosci Methods ; 335: 108623, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32027890

ABSTRACT

An ongoing question in neuroscience is how the peripheral nervous system can repair itself following an injury or insult whereas the central nervous system has a profoundly limited ability for repair. The recent and rapid advancement of our understanding of the gene expression and corresponding biochemical profiles of Schwann cells, within the distal segments of injured peripheral nerves, has helped elucidate the potential mechanisms underlying the unique ability for these cells to enable regeneration of peripheral nerve tissue. Meanwhile, with a new understanding and appreciation for the capabilities of the peripheral nervous system, we are beginning to unlock the potential for neural regeneration and repair within the central nervous system. The aim of this review is to briefly outline the historical advancements that lead to the recent concept of utilizing peripheral nerve tissue grafts or Schwann cell culture implants to serve as repair mechanisms for the central nervous system in the clinical setting of spinal cord injury, multiple sclerosis, and neurodegenerative disorders such as Parkinson's disease.


Subject(s)
Nerve Regeneration , Spinal Cord Injuries , Central Nervous System , Humans , Peripheral Nerves , Schwann Cells
17.
Handb Exp Pharmacol ; 257: 399-423, 2020.
Article in English | MEDLINE | ID: mdl-31541322

ABSTRACT

Using standardized guidelines in preclinical research has received increased interest in light of recent concerns about transparency in data reporting and apparent variation in data quality, as evidenced by irreproducibility of results. Although the costs associated with supporting quality through a quality management system are often obvious line items in laboratory budgets, the treatment of the costs associated with quality failure is often overlooked and difficult to quantify. Thus, general estimations of quality costs can be misleading and inaccurate, effectively undervaluing costs recovered by reducing quality defects. Here, we provide examples of quality costs in preclinical research and describe how we have addressed misconceptions of quality management implementation as only marginally beneficial and/or unduly burdensome. We provide two examples of implementing a quality management system (QMS) in preclinical experimental (animal) research environments - one in Europe, the German Mouse Clinic, having established ISO 9001 and the other in the United States, the University of Kentucky (UK), having established Good Laboratory Practice-compliant infrastructure. We present a summary of benefits to having an effective QMS, as may be useful in guiding discussions with funders or administrators to promote interest and investment in a QMS, which ultimately supports shared, mutually beneficial outcomes.


Subject(s)
Quality Control , Animals , Guidelines as Topic , Mice , United States
18.
Epilepsy Res ; 159: 106244, 2020 01.
Article in English | MEDLINE | ID: mdl-31816591

ABSTRACT

BACKGROUND: Genesis of acquired epilepsy includes transformations spanning genetic-to- network-level modifications, disrupting the regional excitatory/inhibitory balance. Methodology concurrently tracking changes at multiple levels is lacking. Here, viral vectors are used to differentially express two opsin proteins in neuronal populations within dentate gyrus (DG) of hippocampus. When activated, these opsins induced excitatory or inhibitory neural output that differentially affected neural networks and epileptogenesis. In vivo measures included behavioral observation coupled to real-time measures of regional glutamate flux using ceramic-based amperometric microelectrode arrays (MEAs). RESULTS: Using MEA technology, phasic increases of extracellular glutamate were recorded immediately upon application of blue light/488 nm to DG of rats previously transfected with an AAV 2/5 vector containing an (excitatory) channelrhodopsin-2 transcript. Rats receiving twice-daily 30-sec light stimulation to DG ipsilateral to viral transfection progressed through Racine seizure stages. AAV 2/5 (inhibitory) halorhodopsin-transfected rats receiving concomitant amygdalar kindling and DG light stimuli were kindled significantly more slowly than non-stimulated controls. In in vitro slice preparations, both excitatory and inhibitory responses were independently evoked in dentate granule cells during appropriate light stimulation. Latency to response and sensitivity of responses suggest a degree of neuron subtype-selective functional expression of the transcripts. CONCLUSIONS: This study demonstrates the potential for coupling MEA technology and optogenetics for real-time neurotransmitter release measures and modification of seizure susceptibility in animal models of epileptogenesis. This microelectrode/optogenetic technology could prove useful for characterization of network and system level dysfunction in diseases involving imbalanced excitatory/inhibitory control of neuron populations and guide development of future treatment strategies.


Subject(s)
Epilepsy/metabolism , Glutamic Acid/metabolism , Hippocampus/metabolism , Nerve Net/metabolism , Animals , Electrodes, Implanted , Epilepsy/physiopathology , Hippocampus/physiopathology , Male , Nerve Net/physiopathology , Neurons/metabolism , Optogenetics , Rats , Rats, Sprague-Dawley , Synaptic Transmission/physiology
19.
J Neurosci Methods ; 329: 108435, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31600528

ABSTRACT

BACKGROUND: Although GABA is the major inhibitory neurotransmitter in the CNS, quantifying in vivo GABA levels has been challenging. The ability to co-monitor both GABA and the major excitatory neurotransmitter, glutamate, would be a powerful tool in both research and clinical settings. NEW METHOD: Ceramic-based microelectrode arrays (MEAs) were used to quantify gamma-aminobutyric acid (GABA) by employing a dual-enzyme reaction scheme including GABase and glutamate oxidase (GluOx). Glutamate was simultaneously quantified on adjacent recording sites coated with GluOx alone. Endogenous glutamate was subtracted from the combined GABA and glutamate signal to yield a pure GABA concentration. RESULTS: Electrode sensitivity to GABA in conventional, stirred in vitro calibrations at pH 7.4 did not match the in vivo sensitivity due to diffusional losses. Non-stirred calibrations in agarose or stirred calibrations at pH 8.6 were used to match the in vivo GABA sensitivity. In vivo data collected in the rat brain demonstrated feasibility of the GABA/glutamate MEA including uptake of locally applied GABA, KCl-evoked GABA release and modulation of endogenous GABA with vigabatrin. COMPARISON WITH EXISTING METHODS: Implantable enzyme-coated microelectrode arrays have better temporal and spatial resolution than existing off-line methods. However, interpretation of results can be complicated due to the multiple recording site and dual enzyme approach. CONCLUSIONS: The initial in vitro and in vivo studies supported that the new MEA configuration may be a viable platform for combined GABA and glutamate measures in the CNS extending the previous reports to in vivo GABA detection. The challenges of this approach are emphasized.


Subject(s)
Brain Chemistry/physiology , Electrochemistry/standards , Electrodes, Implanted , Glutamic Acid/metabolism , Microelectrodes , gamma-Aminobutyric Acid/metabolism , 4-Aminobutyrate Transaminase , Aldehyde Oxidoreductases , Amino Acid Oxidoreductases , Animals , Ceramics , Electrochemistry/instrumentation , Electrochemistry/methods , Feasibility Studies , Male , Rats , Rats, Inbred F344
20.
Neurochem Int ; 131: 104551, 2019 12.
Article in English | MEDLINE | ID: mdl-31542295

ABSTRACT

In Parkinson's disease, degeneration of substantia nigra dopaminergic neurons is accompanied by damage on other neuronal systems. A severe denervation is for example seen in the locus coerulean noradrenergic system. Little is known about the relation between noradrenergic and dopaminergic degeneration, and the effects of noradrenergic denervation on the function of the dopaminergic neurons of substantia nigra are not fully understood. In this study, N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4) was injected in rats, whereafter behavior, striatal KCl-evoked dopamine and glutamate releases, and immunohistochemistry were monitored at 3 days, 3 months, and 6 months. Quantification of dopamine-beta-hydroxylase-immunoreactive nerve fiber density in the cortex revealed a tendency towards nerve fiber regeneration at 6 months. To sustain a stable noradrenergic denervation throughout the experimental timeline, the animals in the 6-month time point received an additional DSP4 injection (2 months after the first injection). Behavioral examinations utilizing rotarod revealed that DSP4 reduced the time spent on the rotarod at 3 but not at 6 months. KCl-evoked dopamine release was significantly increased at 3 days and 3 months, while the concentrations were normalized at 6 months. DSP4 treatment prolonged both time for onset and reuptake of dopamine release over time. The dopamine degeneration was confirmed by unbiased stereology, demonstrating significant loss of tyrosine hydroxylase-immunoreactive neurons in the substantia nigra. Furthermore, striatal glutamate release was decreased after DSP4. In regards of neuroinflammation, reactive microglia were found over the substantia nigra after DSP4 treatment. In conclusion, long-term noradrenergic denervation reduces the number of dopaminergic neurons in the substantia nigra and affects the functionality of the nigrostriatal system. Thus, locus coeruleus is important for maintenance of nigral dopaminergic neurons.


Subject(s)
Dopaminergic Neurons/physiology , Norepinephrine/physiology , Substantia Nigra/cytology , Substantia Nigra/physiology , Animals , Benzylamines , Calcium-Binding Proteins/metabolism , Denervation , Dopamine/metabolism , Electrophysiological Phenomena/drug effects , Female , Glutamic Acid/metabolism , Locus Coeruleus/drug effects , Locus Coeruleus/metabolism , Microfilament Proteins/metabolism , Microglia/drug effects , Microglia/metabolism , Nerve Fibers/metabolism , Neurons/physiology , Neurotransmitter Uptake Inhibitors , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...