Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Neurodegener ; 19(1): 37, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38654375

ABSTRACT

BACKGROUND: Microglia play important roles in maintaining brain homeostasis and neurodegeneration. The discovery of genetic variants in genes predominately or exclusively expressed in myeloid cells, such as Apolipoprotein E (APOE) and triggering receptor expressed on myeloid cells 2 (TREM2), as the strongest risk factors for Alzheimer's disease (AD) highlights the importance of microglial biology in the brain. The sequence, structure and function of several microglial proteins are poorly conserved across species, which has hampered the development of strategies aiming to modulate the expression of specific microglial genes. One way to target APOE and TREM2 is to modulate their expression using antisense oligonucleotides (ASOs). METHODS: In this study, we identified, produced, and tested novel, selective and potent ASOs for human APOE and TREM2. We used a combination of in vitro iPSC-microglia models, as well as microglial xenotransplanted mice to provide proof of activity in human microglial in vivo. RESULTS: We proved their efficacy in human iPSC microglia in vitro, as well as their pharmacological activity in vivo in a xenografted microglia model. We demonstrate ASOs targeting human microglia can modify their transcriptional profile and their response to amyloid-ß plaques in vivo in a model of AD. CONCLUSIONS: This study is the first proof-of-concept that human microglial can be modulated using ASOs in a dose-dependent manner to manipulate microglia phenotypes and response to neurodegeneration in vivo.


Subject(s)
Alzheimer Disease , Microglia , Oligonucleotides, Antisense , Microglia/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Humans , Oligonucleotides, Antisense/pharmacology , Animals , Mice , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , Induced Pluripotent Stem Cells/metabolism , Gene Expression Regulation/drug effects , Disease Models, Animal
2.
Nat Neurosci ; 27(5): 886-900, 2024 May.
Article in English | MEDLINE | ID: mdl-38539015

ABSTRACT

Microglia are central players in Alzheimer's disease pathology but analyzing microglial states in human brain samples is challenging due to genetic diversity, postmortem delay and admixture of pathologies. To circumvent these issues, here we generated 138,577 single-cell expression profiles of human stem cell-derived microglia xenotransplanted in the brain of the AppNL-G-F model of amyloid pathology and wild-type controls. Xenografted human microglia adopt a disease-associated profile similar to that seen in mouse microglia, but display a more pronounced human leukocyte antigen or HLA state, likely related to antigen presentation in response to amyloid plaques. The human microglial response also involves a pro-inflammatory cytokine/chemokine cytokine response microglia or CRM response to oligomeric Aß oligomers. Genetic deletion of TREM2 or APOE as well as APOE polymorphisms and TREM2R47H expression in the transplanted microglia modulate these responses differentially. The expression of other Alzheimer's disease risk genes is differentially regulated across the distinct cell states elicited in response to amyloid pathology. Thus, we have identified multiple transcriptomic cell states adopted by human microglia in a multipronged response to Alzheimer's disease-related pathology, which should be taken into account in translational studies.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Microglia , Receptors, Immunologic , Transcriptome , Humans , Microglia/metabolism , Microglia/pathology , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Alzheimer Disease/genetics , Animals , Amyloid beta-Peptides/metabolism , Mice , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Mice, Transgenic , Heterografts , Plaque, Amyloid/pathology , Plaque, Amyloid/metabolism , Brain/metabolism , Brain/pathology
3.
Nat Protoc ; 16(2): 1013-1033, 2021 02.
Article in English | MEDLINE | ID: mdl-33424025

ABSTRACT

Microglia are critically involved in complex neurological disorders with a strong genetic component, such as Alzheimer's disease, Parkinson's disease and frontotemporal dementia. Although mouse microglia can recapitulate aspects of human microglia physiology, they do not fully capture the human genetic aspects of disease and do not reproduce all human cell states. Primary cultures of human microglia or microglia derived from human induced pluripotent stem cells (PSCs) are difficult to maintain in brain-relevant cell states in vitro. Here we describe MIGRATE (microglia in vitro generation refined for advanced transplantation experiments, which provides a combined in vitro differentiation and in vivo xenotransplantation protocol to study human microglia in the context of the mouse brain. This article details an accurate, step-by-step workflow that includes in vitro microglia differentiation from human PSCs, transplantation into the mouse brain and quantitative analysis of engraftment. Compared to current differentiation and xenotransplantation protocols, we present an optimized, faster and more efficient approach that yields up to 80% chimerism. To quantitatively assess engraftment efficiency by flow cytometry, access to specialized flow cytometry is required. Alternatively, the percentage of chimerism can be estimated by standard immunohistochemical analysis. The MIGRATE protocol takes ~40 d to complete, from culturing PSCs to engraftment efficiency assessment.


Subject(s)
Mesenchymal Stem Cell Transplantation/methods , Microglia/cytology , Animals , Brain/cytology , Brain/metabolism , Brain/physiology , Cell Differentiation/physiology , Disease Models, Animal , Female , Humans , Induced Pluripotent Stem Cells/cytology , Mice , Microglia/metabolism , Microglia/physiology , Pluripotent Stem Cells/cytology , Pregnancy
4.
J Neuroinflammation ; 16(1): 61, 2019 Mar 13.
Article in English | MEDLINE | ID: mdl-30866963

ABSTRACT

BACKGROUND: Microglia play a central role in most neurological disorders, but the impact of microgliosis on brain environment and clinical functions is not fully understood. Mice lacking multifunctional protein-2 (MFP2), a pivotal enzyme in peroxisomal ß-oxidation, develop a fatal disorder characterized by motor problems similar to the milder form of MFP2 deficiency in humans. The hallmark of disease in mice is the chronic proliferation of microglia in the brain, but molecular pathomechanisms that drive rapid clinical deterioration in human and mice remain unknown. In the present study, we identified the effects of specific deletion of MFP2 from microglia in the brain on immune responses, neuronal functioning, and behavior. METHODS: We created a novel Cx3cr1-Mfp2-/- mouse model and studied the impact of MFP2 deficiency on microglial behavior at different ages using immunohistochemistry and real-time PCR. Pro- and anti-inflammatory responses of Mfp2-/- microglia were assessed in vitro and in vivo after stimulation with IL-1ß/INFγ and IL-4 (in vitro) and LPS and IL-4 (in vivo). Facial nerve axotomy was unilaterally performed in Cx3cr1-Mfp2-/- and control mice, and microglial functioning in response to neuronal injury was subsequently analyzed by histology and real-time PCR. Finally, neuronal function, motor function, behavior, and cognition were assessed using brainstem auditory evoked potentials, grip strength and inverted grid test, open field exploration, and passive avoidance learning, respectively. RESULTS: We found that Mfp2-/- microglia in a genetically intact brain environment adopt an inflammatory activated and proliferative state. In addition, we found that acute inflammatory and neuronal injury provoked normal responses of Mfp2-/- microglia in Cx3cr1-Mfp2-/- mice during the post-injury period. Despite chronic pro-inflammatory microglial reactivity, Cx3cr1-Mfp2-/- mice exhibited normal neuronal transmission, clinical performance, and cognition. CONCLUSION: Our data demonstrate that MFP2 deficiency in microglia causes intrinsic dysregulation of their inflammatory profile, which is not harmful to neuronal function, motor function, and cognition in mice during their first year of life.


Subject(s)
Brain/pathology , Inflammation/pathology , Microglia/drug effects , Microglia/metabolism , Peroxisomal Multifunctional Protein-2/deficiency , Animals , Animals, Newborn , Brain/drug effects , Brain/metabolism , CX3C Chemokine Receptor 1/metabolism , Calcium-Binding Proteins/metabolism , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cells, Cultured , Disease Models, Animal , Evoked Potentials, Auditory, Brain Stem/drug effects , Evoked Potentials, Auditory, Brain Stem/genetics , Exploratory Behavior/drug effects , Exploratory Behavior/physiology , Facial Nerve Diseases/complications , Facial Nerve Diseases/pathology , Functional Laterality , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Hand Strength/physiology , Inflammation/chemically induced , Interleukin-4/administration & dosage , Lipopolysaccharides/toxicity , Mice , Mice, Transgenic , Microfilament Proteins/metabolism , Microglia/pathology , Peroxisomal Multifunctional Protein-2/genetics
5.
Immunology ; 153(3): 342-356, 2018 03.
Article in English | MEDLINE | ID: mdl-28940384

ABSTRACT

Macrophage activation is characterized by pronounced metabolic adaptation. Classically activated macrophages show decreased rates of mitochondrial fatty acid oxidation and oxidative phosphorylation and acquire a glycolytic state together with their pro-inflammatory phenotype. In contrast, alternatively activated macrophages require oxidative phosphorylation and mitochondrial fatty acid oxidation for their anti-inflammatory function. Although it is evident that mitochondrial metabolism is regulated during macrophage polarization and essential for macrophage function, little is known on the regulation and role of peroxisomal ß-oxidation during macrophage activation. In this study, we show that peroxisomal ß-oxidation is strongly decreased in classically activated bone-marrow-derived macrophages (BMDM) and mildly induced in alternatively activated BMDM. To examine the role of peroxisomal ß-oxidation in macrophages, we used Mfp2-/- BMDM lacking the key enzyme of this pathway. Impairment of peroxisomal ß-oxidation in Mfp2-/- BMDM did not cause lipid accumulation but rather an altered distribution of lipid species with very-long-chain fatty acids accumulating in the triglyceride and phospholipid fraction. These lipid alterations in Mfp2-/- macrophages led to decreased inflammatory activation of Mfp2-/- BMDM and peritoneal macrophages evidenced by impaired production of several inflammatory cytokines and chemokines, but did not affect anti-inflammatory polarization. The disturbed inflammatory responses of Mfp2-/- macrophages did not affect immune cell infiltration, as mice with selective elimination of MFP2 from myeloid cells showed normal monocyte and neutrophil influx upon challenge with zymosan. Together, these data demonstrate that peroxisomal ß-oxidation is involved in fine-tuning the phenotype of macrophages, probably by influencing the dynamic lipid profile during macrophage polarization.


Subject(s)
Homeostasis/immunology , Inflammation/immunology , Lipids/immunology , Macrophages/immunology , Animals , Cytokines/immunology , Macrophage Activation/immunology , Mice , Monocytes/immunology , Neutrophils/immunology , Oxidation-Reduction , Oxidative Phosphorylation , Phenotype
6.
Mol Imaging Biol ; 20(1): 94-102, 2018 02.
Article in English | MEDLINE | ID: mdl-28695372

ABSTRACT

PURPOSE: Activation of the innate immune system plays a significant role in pathologies of the central nervous system (CNS). In order to follow disease progression and evaluate effectiveness of potential treatments involved in neuroinflammation, it is important to track neuroinflammatory markers in vivo longitudinally. The translocator protein (TSPO) is used as a target to image neuroinflammation as its expression is upregulated in reactive glial cells during CNS pathologies. However, it remains unclear in which microglial phenotypes TSPO levels are upregulated, as microglia can display a plethora of activation states that can be protective or detrimental to the CNS. PROCEDURES: We assessed the levels of TSPO transcripts in cultured microglia that were polarized into pro- and anti-inflammatory states in vitro and in the brain of mice in which an anti-inflammatory environment was induced in vivo. In addition, we used a mouse model of peroxisomal multifunctional protein-2 (MFP2) deficiency that exhibits widespread neuroinflammation despite no neuronal loss and monitored TSPO expression by immunohistochemistry and by imaging using the TSPO radiotracer [18F]DPA-714. RESULTS: TSPO expression was selectively increased in so-called classically activated or M1 microglia but not in alternatively activated or M2 microglia in vitro. In agreement, TSPO transcript levels were not induced in an anti-inflammatory brain environment. We found that both transcript and protein levels of TSPO are significantly increased in the brain of Mfp2 -/- compared to those of the control mice and TSPO immunoreactivity colocalized predominantly with microglia in Mfp2 -/- brain. In vitro and ex vivo autoradiography in Mfp2 -/- mice using the TSPO radiotracer [18F]DPA-714 confirmed increased expression of TSPO. These data demonstrate that TSPO imaging reveals microgliosis in non-neurodegenerative brain pathologies. CONCLUSIONS: We show that induced TSPO expression marks a pro-inflammatory brain environment that is not necessarily accompanied by neuronal loss.


Subject(s)
Inflammation/pathology , Microglia/pathology , Nerve Degeneration/pathology , Receptors, GABA/genetics , Animals , Brain/pathology , Inflammation/genetics , Mice , Nerve Degeneration/genetics , Peroxisomal Multifunctional Protein-2/deficiency , Peroxisomal Multifunctional Protein-2/metabolism , Positron-Emission Tomography , Pyrazoles/metabolism , Pyrimidines/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, GABA/metabolism , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...