Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Hepatol ; 2012: 459278, 2012.
Article in English | MEDLINE | ID: mdl-22121494

ABSTRACT

Hepcidin, a key regulator of iron metabolism, is activated by bone morphogenetic proteins (BMPs). Mice pair-fed with regular and ethanol-containing L. De Carli diets were employed to study the effect of alcohol on BMP signaling and hepcidin transcription in the liver. Alcohol induced steatosis and TGF-beta expression. Liver BMP2, but not BMP4 or BMP6, expression was significantly elevated. Despite increased BMP expression, the BMP receptor, and transcription factors, Smad1 and Smad5, were not activated. In contrast, alcohol stimulated Smad2 phosphorylation. However, Smad4 DNA-binding activity and the binding of Smad4 to hepcidin promoter were attenuated. In summary, alcohol stimulates TGF-beta and BMP2 expression, and Smad2 phosphorylation but inhibits BMP receptor, and Smad1 and Smad5 activation. Smad signaling pathway in the liver may therefore be involved in the regulation of hepcidin transcription and iron metabolism by alcohol. These findings may help to further understand the mechanisms of alcohol and iron-induced liver injury.

2.
World J Biol Chem ; 2(12): 252-60, 2011 Dec 26.
Article in English | MEDLINE | ID: mdl-22216371

ABSTRACT

AIM: To study the effect of both acute and chronic alcohol exposure on heme oxygenases (HOs) in the brain, liver and duodenum. METHODS: Wild-type C57BL/6 mice, heterozygous Sod2 knockout mice, which exhibit attenuated manganese superoxide dismutase activity, and liver-specific ARNT knockout mice were used to investigate the role of alcohol-induced oxidative stress and hypoxia. For acute alcohol exposure, ethanol was administered in the drinking water for 1 wk. Mice were pair-fed with regular or ethanol-containing Lieber De Carli liquid diets for 4 wk for chronic alcohol studies. HO expression was analyzed by real-time quantitative polymerase chain reaction and Western blotting. RESULTS: Chronic alcohol exposure downregulated HO-1 expression in the brain but upregulated it in the duodenum of wild-type mice. It did not alter liver HO-1 expression, nor HO-2 expression in the brain, liver or duodenum. In contrast, acute alcohol exposure decreased both liver HO-1 and HO-2 expression, and HO-2 expression in the duodenum of wild-type mice. The decrease in liver HO-1 expression was abolished in ARNT(+/-) mice. Sod2(+/-) mice with acute alcohol exposure did not exhibit any changes in liver HO-1 and HO-2 expression or in brain HO-2 expression. However, alcohol inhibited brain HO-1 and duodenal HO-2 but increased duodenal HO-1 expression in Sod2(+/-) mice. Collectively, these findings indicate that acute and chronic alcohol exposure regulates HO expression in a tissue-specific manner. Chronic alcohol exposure alters brain and duodenal, but not liver HO expression. However, acute alcohol exposure inhibits liver HO-1 and HO-2, and also duodenal HO-2 expression. CONCLUSION: The inhibition of liver HO expression by acute alcohol-induced hypoxia may play a role in the early phases of alcoholic liver disease progression.

3.
Arch Toxicol ; 82(2): 103-16, 2008 Feb.
Article in English | MEDLINE | ID: mdl-17874069

ABSTRACT

The objectives of this study were twofold: (1) evaluating the carcinogenic potential of the mixture of two persistent environmental pollutants, hexachlorobenzene (HCB) and 3,3',4,4',5-pentachlorobiphenyl (PCB 126), in an initiation-promotion bioassay involving the development of pi glutathione S-transferase (GST-P) liver foci, and (2) analyzing the GST-P foci data using a biologically-based computer model (i.e., clonal growth model) with an emphasis on the effect of focal size on the growth kinetics of initiated cells. The 8-week bioassay involved a series of treatments of initiator, two-thirds partial hepatectomy, and daily oral gavage of the mixture of two doses in male F344 rats. The mixture treatment significantly increased liver GST-P foci development, indicating carcinogenic potential of this mixture. Our clonal growth model was developed to simulate the appearance and development of initiated GST-P cells in the liver over time. In the model, the initiated cells were partitioned into two subpopulations with the same division rate but different death rates. Each subpopulation was further categorized into single cells, mini- (2-11 cells), medium- (12-399 cells), and large-foci (>399 cells) with different growth kinetics. Our modeling suggested that the growth of GST-P foci is size-dependent; in general, the larger the foci, the higher the rate constants of division and death. In addition, the modeling implied that the two doses promoted foci development in different manners even though the experimental foci data appeared to be similar between the two doses. This study further illustrated how clonal growth modeling may facilitate our understanding in chemical carcinogenic process.


Subject(s)
Carcinogens/toxicity , Glutathione S-Transferase pi/drug effects , Hexachlorobenzene/toxicity , Liver/drug effects , Polychlorinated Biphenyls/toxicity , Administration, Oral , Animals , Biological Assay , Carcinogenicity Tests , Carcinogens/administration & dosage , Computer Simulation , Dose-Response Relationship, Drug , Environmental Pollutants/administration & dosage , Environmental Pollutants/toxicity , Glutathione S-Transferase pi/metabolism , Hexachlorobenzene/administration & dosage , Liver/pathology , Male , Models, Biological , Polychlorinated Biphenyls/administration & dosage , Rats , Rats, Inbred F344
SELECTION OF CITATIONS
SEARCH DETAIL