Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Fish Biol ; 97(1): 273-278, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32383474

ABSTRACT

X-ray tomography shows that caniniform and molariform teeth of the gilthead sea bream, Sparus aurata, have a simplexodont plicidentine organization. Together with an insertion of the teeth in alveolae, and the presence of bony shafts sustaining the dental plate, the simplexodont plicidentine is linked to the durophagous diet of the fish.


Subject(s)
Sea Bream/anatomy & histology , Tooth/anatomy & histology , Animals
2.
J Anat ; 235(6): 1105-1113, 2019 12.
Article in English | MEDLINE | ID: mdl-31355451

ABSTRACT

The dermoskeleton of the earliest vertebrates is well known but their endoskeleton is thought to have been largely cartilaginous until the Late Silurian. We confirm that the dermal plates of Astraspis are three-layered, with a superficial layer of enameloid and orthodentine, a middle layer of aspidin and a basal layer of lamellar acellular bone. This dermoskeleton is found in association with globular calcified cartilage, indicating the presence of a partially mineralized endoskeleton. In addition to the classical three-layered organization, some dermal plates exhibit alignments of chondrocyte-like lacunae, very similar to a pattern typical of chondroid metaplastic bone, previously unknown in early vertebrates. This discovery implies the presence of a proliferative cartilage, hitherto only known in Osteichthyans. This discovery indicates that a pattern similar to the first step of endochondral ossification was already present in the earliest vertebrates.


Subject(s)
Bone and Bones/anatomy & histology , Calcification, Physiologic , Cartilage/anatomy & histology , Vertebrates/anatomy & histology , Animals , Biological Evolution , Fossils
3.
J Morphol ; 280(7): 982-998, 2019 07.
Article in English | MEDLINE | ID: mdl-31090239

ABSTRACT

The lifestyle of extinct tetrapods is often difficult to assess when clear morphological adaptations such as swimming paddles are absent. According to the hypothesis of bone functional adaptation, the architecture of trabecular bone adapts sensitively to physiological loadings. Previous studies have already shown a clear relation between trabecular architecture and locomotor behavior, mainly in mammals and birds. However, a link between trabecular architecture and lifestyle has rarely been examined. Here, we analyzed trabecular architecture of different clades of reptiles characterized by a wide range of lifestyles (aquatic, amphibious, generalist terrestrial, fossorial, and climbing). Humeri of squamates, turtles, and crocodylians have been scanned with microcomputed tomography. We selected spherical volumes of interest centered in the proximal metaphyses and measured trabecular spacing, thickness and number, degree of anisotropy, average branch length, bone volume fraction, bone surface density, and connectivity density. Only bone volume fraction showed a significant phylogenetic signal and its significant difference between squamates and other reptiles could be linked to their physiologies. We found negative allometric relationships for trabecular thickness and spacing, positive allometries for connectivity density and trabecular number and no dependence with size for degree of anisotropy and bone volume fraction. The different lifestyles are well separated in the morphological space using linear discriminant analyses, but a cross-validation procedure indicated a limited predictive ability of the model. The trabecular bone anisotropy has shown a gradient in turtles and in squamates: higher values in amphibious than terrestrial taxa. These allometric scalings, previously emphasized in mammals and birds, seem to be valid for all amniotes. Discriminant analysis has offered, to some extent, a distinction of lifestyles, which however remains difficult to strictly discriminate. Trabecular architecture seems to be a promising tool to infer lifestyle of extinct tetrapods, especially those involved in the terrestrialization.


Subject(s)
Body Size , Cancellous Bone/anatomy & histology , Humerus/anatomy & histology , Phylogeny , Turtles/anatomy & histology , Animals , Anisotropy , Discriminant Analysis , Humerus/diagnostic imaging , Imaging, Three-Dimensional , Organ Size , X-Ray Microtomography
4.
Curr Biol ; 26(10): 1376-82, 2016 05 23.
Article in English | MEDLINE | ID: mdl-27161503

ABSTRACT

Symbiosis [1], understood as prolonged interspecific association, is as ancient as the eukaryotic cell [2, 3]. A variety of such associations have been reported in the continental fossil record, albeit sporadically. As for mites, which as a group have been present since the Devonian (ca. 390 mya) [4, 5] and are involved in a tremendous variety of modern-day symbioses, reported associations are limited to a few amber-preserved cases [6-11], with the earliest instance in the Cretaceous (ca. 85 mya) [11]. As a consequence, the antiquity and origin of associations involving small-sized mites and larger animals are poorly understood. Here we report, recovered from the Carboniferous Xiaheyan locality (ca. 320 mya), an oribatid mite located on the thorax of an extinct relative of grasshoppers, crickets, and katydids [12]. The mite was investigated using several methods, including phase-contrast tomography. The detailed morphological data allowed the placement of the mite in a new family within Mixonomata, whose fossil record is thus extended by ca. 250 Ma. Specimen and abundance distribution data derived from the fossil insect sample indicate that specimens from the corresponding excavation site were buried rapidly and were sub-autochthonous, indicating a syn vivo association. Moreover, the mite is located in a sequestered position on the insect. The observed interaction best fits the definition for phoresy, in which the benefit is transport and protection for the mite. This discovery demonstrates that this association, a trait shared by representatives of the most speciose mite taxa, arose very early during mite evolution.


Subject(s)
Biological Evolution , Insecta/physiology , Mites/classification , Mites/physiology , Symbiosis , Animals , China , Fossils/anatomy & histology , Insecta/anatomy & histology , Mites/anatomy & histology , Phylogeny
5.
PLoS One ; 8(10): e76741, 2013.
Article in English | MEDLINE | ID: mdl-24146919

ABSTRACT

BACKGROUND: During their evolution in the Late Cretaceous, mosasauroids attained a worldwide distribution, accompanied by a marked increase in body size and open ocean adaptations. This transition from land-dwellers to highly marine-adapted forms is readily apparent not only at the gross anatomic level but also in their inner bone architecture, which underwent profound modifications. METHODOLOGY/PRINCIPAL FINDINGS: The present contribution describes, both qualitatively and quantitatively, the internal organization (microanatomy) and tissue types and characteristics (histology) of propodial and epipodial bones in one lineage of mosasauroids; i.e., the subfamily Mosasaurinae. By using microanatomical and histological data from limb bones in combination with recently acquired knowledge on the inner structure of ribs and vertebrae, and through comparisons with extant squamates and semi-aquatic to fully marine amniotes, we infer possible implications on mosasaurine evolution, aquatic adaptation, growth rates, and basal metabolic rates. Notably, we observe the occurrence of an unusual type of parallel-fibered bone, with large and randomly shaped osteocyte lacunae (otherwise typical of fibrous bone) and particular microanatomical features in Dallasaurus, which displays, rather than a spongious inner organization, bone mass increase in its humeri and a tubular organization in its femora and ribs. CONCLUSIONS/SIGNIFICANCE: The dominance of an unusual type of parallel-fibered bone suggests growth rates and, by extension, basal metabolic rates intermediate between that of the extant leatherback turtle, Dermochelys, and those suggested for plesiosaur and ichthyosaur reptiles. Moreover, the microanatomical features of the relatively primitive genus Dallasaurus differ from those of more derived mosasaurines, indicating an intermediate stage of adaptation for a marine existence. The more complete image of the various microanatomical trends observed in mosasaurine skeletal elements supports the evolutionary convergence between this lineage of secondarily aquatically adapted squamates and cetaceans in the ecological transition from a coastal to a pelagic lifestyle.


Subject(s)
Adaptation, Physiological , Aquatic Organisms/growth & development , Bone and Bones/anatomy & histology , Bone and Bones/cytology , Reptiles/anatomy & histology , Reptiles/growth & development , Animals , Basal Metabolism , Biological Evolution , Discriminant Analysis
6.
PLoS One ; 8(7): e63586, 2013.
Article in English | MEDLINE | ID: mdl-23874378

ABSTRACT

BACKGROUND: Secondary adaptation to aquatic life occurred independently in several amniote lineages, including reptiles during the Mesozoic and mammals during the Cenozoic. These evolutionary shifts to aquatic environments imply major morphological modifications, especially of the feeding apparatus. Mesozoic (250-65 Myr) marine reptiles, such as ichthyosaurs, plesiosaurs, mosasaurid squamates, crocodiles, and turtles, exhibit a wide range of adaptations to aquatic feeding and a broad overlap of their tooth morphospaces with those of Cenozoic marine mammals. However, despite these multiple feeding behavior convergences, suction feeding, though being a common feeding strategy in aquatic vertebrates and in marine mammals in particular, has been extremely rarely reported for Mesozoic marine reptiles. PRINCIPAL FINDINGS: A relative of fossil protostegid and dermochelyoid sea turtles, Ocepechelon bouyai gen. et sp. nov. is a new giant chelonioid from the Late Maastrichtian (67 Myr) of Morocco exhibiting remarkable adaptations to marine life (among others, very dorsally and posteriorly located nostrils). The 70-cm-long skull of Ocepechelon not only makes it one of the largest marine turtles ever described, but also deviates significantly from typical turtle cranial morphology. It shares unique convergences with both syngnathid fishes (unique long tubular bony snout ending in a rounded and anteriorly directed mouth) and beaked whales (large size and elongated edentulous jaws). This striking anatomy suggests extreme adaptation for suction feeding unmatched among known turtles. CONCLUSION/SIGNIFICANCE: The feeding apparatus of Ocepechelon, a bony pipette-like snout, is unique among tetrapods. This new taxon exemplifies the successful systematic and ecological diversification of chelonioid turtles during the Late Cretaceous. This new evidence for a unique trophic specialization in turtles, along with the abundant marine vertebrate faunas associated to Ocepechelon in the Late Maastrichtian phosphatic beds of Morocco, further supports the hypothesis that marine life was, at least locally, very diversified just prior to the Cretaceous/Palaeogene (K/Pg) biotic crisis.


Subject(s)
Adaptation, Physiological/physiology , Feeding Behavior/physiology , Reptiles/anatomy & histology , Reptiles/genetics , Tooth/anatomy & histology , Turtles/anatomy & histology , Turtles/genetics , Adaptation, Physiological/genetics , Animals , Biological Evolution , Fossils , Morocco , Phylogeny , Skull/anatomy & histology , Suction
7.
Nature ; 474(7349): 83-6, 2011 Jun 02.
Article in English | MEDLINE | ID: mdl-21552278

ABSTRACT

The vast majority of Mesozoic and early Cenozoic metatherian mammals (extinct relatives of modern marsupials) are known only from partial jaws or isolated teeth, which give insight into their probable diets and phylogenetic relationships but little else. The few skulls known are generally crushed, incomplete or both, and associated postcranial material is extremely rare. Here we report the discovery of an exceptionally large number of almost undistorted, nearly complete skulls and skeletons of a stem-metatherian, Pucadelphys andinus, in the early Palaeocene epoch of Tiupampa in Bolivia. These give an unprecedented glimpse into early metatherian morphology, evolutionary relationships and, especially, ecology. The remains of 35 individuals have been collected, with 22 of these represented by nearly complete skulls and associated postcrania. These individuals were probably buried in a single catastrophic event, and so almost certainly belong to the same population. The preservation of multiple adult, sub-adult and juvenile individuals in close proximity (<1 m(2)) is indicative of gregarious social behaviour or at least a high degree of social tolerance and frequent interaction. Such behaviour is unknown in living didelphids, which are highly solitary and have been regarded, perhaps wrongly, as the most generalized living marsupials. The Tiupampan P. andinus population also exhibits strong sexual dimorphism, which, in combination with gregariousness, suggests strong male-male competition and polygyny. Our study shows that social interactions occurred in metatherians as early as the basal Palaeocene and that solitary behaviour may not be plesiomorphic for Metatheria as a whole.


Subject(s)
Fossils , Marsupialia/classification , Social Behavior , Animals , Bolivia , Female , Male , Marsupialia/anatomy & histology , Sex Characteristics
8.
Syst Biol ; 60(5): 630-44, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21447482

ABSTRACT

Despite the recent surge of interest in studying the evolution of development, surprisingly little work has been done to investigate the phylogenetic signal in developmental characters. Yet, both the potential usefulness of developmental characters in phylogenetic reconstruction and the validity of inferences on the evolution of developmental characters depend on the presence of such a phylogenetic signal and on the ability of our coding scheme to capture it. In a recent study, we showed, using simulations, that a new method (called the continuous analysis) using standardized time or ontogenetic sequence data and squared-change parsimony outperformed event pairing and event cracking in analyzing developmental data on a reference phylogeny. Using the same simulated data, we demonstrate that all these coding methods (event pairing and standardized time or ontogenetic sequence data) can be used to produce phylogenetically informative data. Despite some dependence between characters (the position of an event in an ontogenetic sequence is not independent of the position of other events in the same sequence), parsimony analysis of such characters converges on the correct phylogeny as the amount of data increases. In this context, the new coding method (developed for the continuous analysis) outperforms event pairing; it recovers a lower proportion of incorrect clades. This study thus validates the use of ontogenetic data in phylogenetic inference and presents a simple coding scheme that can extract a reliable phylogenetic signal from these data.


Subject(s)
Urodela/classification , Animals , Biological Evolution , Computer Simulation , Models, Biological , Models, Statistical , Osteogenesis , Phylogeny , Reproducibility of Results , Skull/physiology , Time Factors , Urodela/physiology
9.
Evol Dev ; 11(2): 170-90, 2009.
Article in English | MEDLINE | ID: mdl-19245549

ABSTRACT

Ossification sequences of the skull in extant Urodela and in Permo-Carboniferous Branchiosauridae have already been used to study the origin of lissamphibians. But most of these studies did not consider some recent methods developed to analyze the developmental sequences within a phylogenetic framework. Here, we analyze the ossification sequences of 24 cranial bones of 23 extant species of salamanders using the event-pairing method. This reveals new developmental synapomorphies for several extant salamander taxa and ancestral sequences for Urodela under four alternative reference phylogenies. An analysis with the 12 bones for which ossification sequence data are available in urodeles and in the branchiosaurid Apateon is also performed in order to compare the ancestral condition of the crown-group of Urodela to the sequence of Apateon. This reveals far more incompatibilities than previously suggested. The similarities observed between some extant salamanders and branchiosaurids may result from extensive homoplasy, as the extreme variation observed in extant Urodela suggests, or be plesiomorphic, as the conservation of some ossification patterns observed in other remotely related vertebrates like actinopterygians suggests. We propose a new, simpler method based on squared-change optimization to estimate the relative timing of ossification of various bones of hypothetical ancestors, and use independent-contrasts analysis to estimate the confidence intervals around these times. Our results show that the uncertainty of the ancestral ossification sequence of Urodela is much greater than event-pairing suggests. The developmental data do not allow to conclude that branchiosaurids are closely related to salamanders and their limited taxonomic distribution in Paleozoic taxa precludes testing hypotheses about lissamphibian origins. This is true regardless of the analytical method used (event-pairing or our new method based on squared-change parsimony). Simulations show that the new analytical method is generally more powerful to detect evolutionary shifts in developmental timing, and has lower Type I error rate than event-pairing. It also makes fewer errors in ancestral character value or state assignment than event-pairing.


Subject(s)
Urodela/physiology , Animals , Biological Evolution , Evolution, Molecular , Gene Expression Regulation, Developmental , Models, Biological , Models, Statistical , Osteogenesis , Phylogeny , Reproducibility of Results , Skull/embryology , Time Factors , Urodela/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...