Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Mol Genet Genomic Med ; 12(1): e2363, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38284452

ABSTRACT

INTRODUCTION AND METHODS: We report two series of individuals with DDX3X variations, one (48 individuals) from physicians and one (44 individuals) from caregivers. RESULTS: These two series include several symptoms in common, with fairly similar distribution, which suggests that caregivers' data are close to physicians' data. For example, both series identified early childhood symptoms that were not previously described: feeding difficulties, mean walking age, and age at first words. DISCUSSION: Each of the two datasets provides complementary knowledge. We confirmed that symptoms are similar to those in the literature and provides more details on feeding difficulties. Caregivers considered that the symptom attention-deficit/hyperactivity disorder were most worrisome. Both series also reported sleep disturbance. Recently, anxiety has been reported in individuals with DDX3X variants. We strongly suggest that attention-deficit/hyperactivity disorder, anxiety, and sleep disorders need to be treated.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Caregivers , Child, Preschool , Humans , Attention Deficit Disorder with Hyperactivity/genetics , Attention Deficit Disorder with Hyperactivity/therapy , DEAD-box RNA Helicases , Self Report , Infant
2.
Front Neurosci ; 17: 1289013, 2023.
Article in English | MEDLINE | ID: mdl-38027471

ABSTRACT

Introduction: Fetal alcohol spectrum disorders (FASD) range from fetal alcohol syndrome (FAS) to non-syndromic forms (NS-FASD). The neuroanatomical consequences of prenatal alcohol exposure are mainly the reduction in brain size, but also focal abnormalities such as those of the corpus callosum (CC). We previously showed a narrowing of the CC for brain size, using manual measurement and its usefulness to improve diagnostic certainty. Our aim was to automate these measurements of the CC and identify more recurrent abnormalities in FAS subjects, independently of brain size reduction. Methods: We developed a fast, automated, and normalization-free method based on spectral analysis to generate thicknesses of the CC continuously and at singular points (genu, body, isthmus, and splenium), and its length (LCC). We applied it on midsagittal section of the CC extracted from T1-anatomical brain MRI of 89 subjects with FASD (52 FAS, 37 NS-FASD) and 126 with typically development (6-20 y-o). After adjusting for batch effect, we compared the mean profiles and thicknesses of the singular points across the 3 groups. For each parameter, we established variations with age (growth charts) and brain size in the control group (scaling charts), then identified participants with abnormal measurements (<10th percentile). Results: We confirmed the slimming of the posterior half of the CC in both FASD groups, and of the genu section in the FAS group, compared to the control group. We found a significant group effect for the LCC, genu, median body, isthmus, and splenium thicknesses (p < 0.05). We described a body hump whose morphology did not differ between groups. According to the growth charts, there was an excess of FASD subjects with abnormal LCC and isthmus, and of FAS subjects with abnormal genu and splenium. According to the scaling charts, this excess remained only for LCC, isthmus and splenium, undersized for brain size. Conclusion: We characterized size-independent anomalies of the posterior part of the CC in FASD, with an automated method, confirming and extending our previous study. Our new tool brings the use of a neuroanatomical criterion including CC damage closer to clinical practice. Our results suggest that an FAS signature identified in NS-FASD, could improve diagnosis specificity.

3.
Clin Neuropsychol ; : 1-24, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37974061

ABSTRACT

Introduction: Fetal Alcohol Spectrum Disorders (FASD) are characterized by a variety of multiple cognitive and behavioral impairments, with intellectual, attentional, and executive impairments being the most commonly reported. In populations with multiple neurodevelopmental disorders, the Full Scale Intelligence Quotient (FSIQ) may not be a proper measure of intellectual abilities, rarely interpreted in FASD clinical practice because the heterogeneity of the cognitive profile is deemed too strong. We propose a quantitative characterization of this heterogeneity, of the strengths and weaknesses profile, and a differential analysis between global cognitive (FSIQ) and elementary reasoning abilities in a large retrospective monocentric FASD sample. Methods: Using clinical and cognitive data (Wechsler Intelligence Scale for Children) from 107 children with FASD, we characterized subject heterogeneity (variance and scatter of scaled/composite scores), searched for strengths and weaknesses, and specified intellectual functioning in terms of FSIQ and elementary reasoning (General Abilities Index, Highest Reasoning Scaled Score), in comparison with standardization norms and a Monte-Carlo-simulated sample from normalization data. Results: Performance of children with FASD was lower on all subtests, with a significant weakness in working memory and processing speed. We found no increase in the variance and scatter of the scores, but a discordance between the assessment of global cognitive functioning (28% borderline, 23% deficient) and that of global and elementary reasoning abilities (23-9% borderline, 15-14% deficient). Conclusion: Our results question the notion of WISC profile heterogeneity in FASD and point to working memory and processing speed over-impairment, with global repercussions but most often preserved elementary reasoning abilities.

4.
Mol Autism ; 14(1): 45, 2023 11 27.
Article in English | MEDLINE | ID: mdl-38012709

ABSTRACT

BACKGROUND: Repetitive and restricted behaviors and interests (RRBI) are core symptoms of autism with a complex entity and are commonly categorized into 'motor-driven' and 'cognitively driven'. RRBI symptomatology depends on the individual's clinical environment limiting the understanding of RRBI physiology, particularly their associated neuroanatomical structures. The complex RRBI heterogeneity needs to explore the whole RRBI spectrum by integrating the clinical context [autistic individuals, their relatives and typical developing (TD) individuals]. We hypothesized that different RRBI dimensions would emerge by exploring the whole spectrum of RRBI and that these dimensions are associated with neuroanatomical signatures-involving cortical and subcortical areas. METHOD: A sample of 792 individuals composed of 267 autistic subjects, their 370 first-degree relatives and 155 TD individuals was enrolled in the study. We assessed the whole patterns of RRBI in each individual by using the Repetitive Behavior Scale-Revised and the Yale-Brown Obsessive Compulsive Scale. We estimated brain volumes using MRI scanner for a subsample of the subjects (n = 152, 42 ASD, 89 relatives and 13 TD). We first investigated the dimensionality of RRBI by performing a principal component analysis on all items of these scales and included all the sampling population. We then explored the relationship between RRBI-derived factors with brain volumes using linear regression models. RESULTS: We identified 3 main factors (with 30.3% of the RRBI cumulative variance): Factor 1 (FA1, 12.7%) reflected mainly the 'motor-driven' RRBI symptoms; Factor 2 and 3 (respectively, 8.8% and 7.9%) gathered mainly Y-BOCS related items and represented the 'cognitively driven' RRBI symptoms. These three factors were significantly associated with the right/left putamen volumes but with opposite effects: FA1 was negatively associated with an increased volume of the right/left putamen conversely to FA2 and FA3 (all uncorrected p < 0.05). FA1 was negatively associated with the left amygdala (uncorrected p < 0.05), and FA2 was positively associated with the left parietal structure (uncorrected p = 0.001). CONCLUSION: Our results suggested 3 coherent RRBI dimensions involving the putamen commonly and other structures according to the RRBI dimension. The exploration of the putamen's integrative role in RSBI needs to be strengthened in further studies.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Humans , Autistic Disorder/diagnostic imaging , Autism Spectrum Disorder/diagnosis , Neuroanatomy , Magnetic Resonance Imaging , Principal Component Analysis
5.
Front Neurosci ; 17: 1188367, 2023.
Article in English | MEDLINE | ID: mdl-37360177

ABSTRACT

Introduction: Fetal alcohol spectrum disorders (FASD) range from fetal alcohol syndrome (FAS) to non-syndromic non-specific forms (NS-FASD) that are still underdiagnosed and could benefit from new neuroanatomical markers. The main neuroanatomical manifestation of prenatal alcohol exposure on developmental toxicity is the reduction in brain size, but repeated imaging observations have long driven the attention on the corpus callosum (CC), without being all convergent. Our study proposed a new segmentation of the CC that relies on both a sulci-based cortical segmentation and the "hemispherotopic" organization of the transcallosal fibers. Methods: We collected a monocentric series of 37 subjects with FAS, 28 with NS-FASD, and 38 with typical development (6 to 25 years old) using brain MRI (1.5T). Associating T1- and diffusion-weighted imaging, we projected a sulci-based cortical segmentation of the hemispheres on the midsagittal section of the CC, resulting in seven homologous anterior-posterior parcels (frontopolar, anterior and posterior prefrontal, precentral, postcentral, parietal, and occipital). We measured the effect of FASD on the area of callosal and cortical parcels by considering age, sex, and brain size as linear covariates. The surface proportion of the corresponding cortical parcel was introduced as an additional covariate. We performed a normative analysis to identify subjects with an abnormally small parcel. Results: All callosal and cortical parcels were smaller in the FASD group compared with controls. When accounting for age, sex, and brain size, only the postcentral (η2 = 6.5%, pFDR = 0.032) callosal parcel and % of the cortical parcel (η2 = 8.9%, pFDR = 0.007) were still smaller. Adding the surface proportion (%) of the corresponding cortical parcel to the model, only the occipital parcel was persistently reduced in the FASD group (η2 = 5.7%, pFDR = 0.014). In the normative analysis, we found an excess of subjects with FASD with abnormally small precentral and postcentral (peri-isthmic) and posterior-splenial parcels (pFDR < 0.05). Conclusion: The objective sulcal and connectivity-based method of CC parcellation proved to be useful not only in confirming posterior-splenial damage in FASD but also in the narrowing of the peri-isthmic region strongly associated with a specific size reduction in the corresponding postcentral cortical region (postcentral gyrus). The normative analysis showed that this type of callosal segmentation could provide a clinically relevant neuroanatomical endophenotype, even in NS-FASD.

6.
Hum Brain Mapp ; 44(11): 4321-4336, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37209313

ABSTRACT

In fetal alcohol spectrum disorders (FASD), brain growth deficiency is a hallmark of subjects both with fetal alcohol syndrome (FAS) and with non-syndromic FASD (NS-FASD, i.e., those without specific diagnostic features). However, although the cerebellum was suggested to be more severely undersized than the rest of the brain, it has not yet been given a specific place in the FASD diagnostic criteria where neuroanatomical features still count for little if anything in diagnostic specificity. We applied a combination of cerebellar segmentation tools on a 1.5 T 3DT1 brain MRI dataset from a monocentric population of 89 FASD (52 FAS, 37 NS-FASD) and 126 typically developing controls (6-20 years old), providing 8 volumes: cerebellum, vermis and 3 lobes (anterior, posterior, inferior), plus total brain volume. After adjustment of confounders, the allometric scaling relationship between these cerebellar volumes (Vi ) and the total brain or cerebellum volume (Vt ) was fitted (Vi = bVt a ), and the effect of group (FAS, control) on allometric scaling was evaluated. We then estimated for each cerebellar volume in the FAS population the deviation from the typical scaling (v DTS) learned in the controls. Lastly, we trained and tested two classifiers to discriminate FAS from controls, one based on the total cerebellum v DTS only, the other based on all the cerebellar v DTS, comparing their performance both in the FAS and the NS-FASD group. Allometric scaling was significantly different between FAS and control group for all the cerebellar volumes (p < .001). We confirmed the excess of total cerebellum volume deficit (v DTS = -10.6%) and revealed an antero-inferior-posterior gradient of volumetric undersizing in the hemispheres (-12.4%, 1.1%, 2.0%, respectively) and the vermis (-16.7%, -9.2%, -8.6%, repectively). The classifier based on the intracerebellar gradient of v DTS performed more efficiently than the one based on total cerebellum v DTS only (AUC = 92% vs. 82%, p = .001). Setting a high probability threshold for >95% specificity of the classifiers, the gradient-based classifier identified 35% of the NS-FASD to have a FAS cerebellar phenotype, compared to 11% with the cerebellum-only classifier (pFISHER = 0.027). In a large series of FASD, this study details the volumetric undersizing within the cerebellum at the lobar and vermian level using allometric scaling, revealing an anterior-inferior-posterior gradient of vulnerability to prenatal alcohol exposure. It also strongly suggests that this intracerebellar gradient of volumetric undersizing may be a reliable neuroanatomical signature of FAS that could be used to improve the specificity of the diagnosis of NS-FASD.


Subject(s)
Fetal Alcohol Spectrum Disorders , Prenatal Exposure Delayed Effects , Humans , Pregnancy , Female , Fetal Alcohol Spectrum Disorders/diagnostic imaging , Brain/diagnostic imaging , Cerebellum/diagnostic imaging , Magnetic Resonance Imaging
7.
Dev Med Child Neurol ; 65(10): 1332-1342, 2023 10.
Article in English | MEDLINE | ID: mdl-36883642

ABSTRACT

AIM: To identify subtypes of developmental coordination disorder (DCD) in children. METHOD: Children with DCD diagnosed through comprehensive evaluation at Robert-Debré Children's University Hospital (Paris, France) were consecutively enrolled from February 2017 to March 2020. We performed an unsupervised hierarchical clustering based on principal component analysis using a large set of variables encompassing cognitive, motor, and visuospatial scores (Wechsler Intelligence Scale for Children, Fifth Edition; Developmental Neuropsychological Assessment, Second Edition; Movement Assessment Battery for Children, Second Edition). RESULTS: One hundred and sixty-four children with DCD were enrolled (median age 10 years 3 months; male:female ratio 5.56:1). We identified distinct subgroups with mixed visuospatial and gestural disorders, or with pure gestural disorders that predominantly impaired either speed or precision. Associated neurodevelopmental disorders, such as attention-deficit/hyperactivity disorder, did not influence the results of the clustering. Importantly, we identified a subgroup of children with marked visuospatial impairment with the lowest scores in almost all of the evaluated domains, and the poorest school performance. INTERPRETATION: The classification of DCD into distinct subgroups could be indicative of prognosis and provide critical information to guide patient management, taking into account the child's neuropsychological profile. Beyond this clinical interest, our findings also provide a relevant framework with homogeneous subgroups of patients for research on the pathogenesis of DCD. WHAT THIS PAPER ADDS: Unsupervised hierarchical clustering identified four subgroups of children with developmental coordination disorder. Two subgroups had combined visuospatial/gestural difficulties, and two had pure gestural disorders. Severe visuospatial impairment was associated with poor performance in most domains including school. Difficulties in the gestural-only clusters were predominantly either gestural precision or speed.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Motor Skills Disorders , Humans , Male , Child , Female , Motor Skills Disorders/diagnosis , Motor Skills Disorders/epidemiology , Motor Skills Disorders/complications , Attention Deficit Disorder with Hyperactivity/complications , Movement , Cluster Analysis , France
8.
Autism Res ; 16(2): 364-378, 2023 02.
Article in English | MEDLINE | ID: mdl-36464763

ABSTRACT

As an integral part of autism spectrum symptoms, sensory processing issues including both hypo and hyper sensory sensitivities. These sensory specificities may result from an excitation/inhibition imbalance with a poorly understood of their level of convergence with genetic alterations in GABA-ergic and glutamatergic pathways. In our study, we aimed to characterize the hypo/hyper-sensory profile among autistic individuals. We then explored its link with the burden of deleterious mutations in a subset of individuals with available whole-genome sequencing data. To characterize the hypo/hyper-sensory profile, the differential Short Sensory Profile (dSSP) was defined as a normalized and centralized hypo/hypersensitivity ratio from the Short Sensory Profile (SSP). Including 1136 participants (533 autistic individuals, 210 first-degree relatives, and 267 controls) from two independent study samples (PARIS and LEAP), we observed a statistically significant dSSP mean difference between autistic individuals and controls, driven mostly by a high dSSP variability, with an intermediated profile represented by relatives. Our genetic analysis tended to associate the dSSP and the hyposensitivity with mutations of the GABAergic pathway. The major limitation was the dSSP difficulty to discriminate subjects with a similar quantum of hypo- and hyper-sensory symptoms to those with no such symptoms, resulting both in a similar ratio score of 0. However, the dSSP could be a relevant clinical score, and combined with additional sensory descriptions, genetics and endophenotypic substrates, will improve the exploration of the underlying neurobiological mechanisms of sensory processing differences in autism spectrum.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Child Development Disorders, Pervasive , Child , Humans , Autistic Disorder/genetics , Autism Spectrum Disorder/genetics , Sensation , Perception
9.
Dev Med Child Neurol ; 65(4): 551-562, 2023 04.
Article in English | MEDLINE | ID: mdl-36137006

ABSTRACT

AIM: To identify easily accessible neuroanatomical abnormalities useful for diagnosing fetal alcohol spectrum disorders (FASD) in fetal alcohol syndrome (FAS) but more importantly for the probabilistic diagnosis of non-syndromic forms (NS-FASD). METHOD: We retrospectively collected monocentric data from 52 individuals with FAS, 37 with NS-FASD, and 94 paired typically developing individuals (6-20 years, 99 males, 84 females). On brain T1-weighted magnetic resonance imaging, we measured brain size, corpus callosum length and thicknesses, vermis height, then evaluated vermis foliation (Likert scale). For each parameter, we established variations with age and brain size in comparison individuals (growth and scaling charts), then identified participants with abnormal measurements (<10th centile). RESULTS: According to growth charts, there was an excess of FAS with abnormally small brain, isthmus, splenium, and vermis. According to scaling charts, this excess remained only for isthmus thickness and vermis height. The vermis foliation was pathological in 18% of those with FASD but in no comparison individual. Overall, 39% of those with FAS, 27% with NS-FASD, but only 2% of comparison individuals presented with two FAS-recurrent abnormalities, and 19% of those with FAS had all three. Considering the number of anomalies, there was a higher likelihood of a causal link with alcohol in 14% of those with NS-FASD. INTERPRETATION: Our results suggest that adding an explicit composite neuroanatomical-radiological criterion for FASD diagnosis may improve its specificity, especially in NS-FASD. WHAT THIS PAPER ADDS: Neuroanatomical anomalies independent of microcephaly can be measured with clinical-imaging tools. Small-for-age brain, small-for-brain-size callosal isthmus or vermian height, and disrupted vermis foliation are fetal alcohol syndrome (FAS)-recurrent anomalies. Associations of these anomalies are frequent in fetal alcohol spectrum disorder (FASD) even without FAS, while exceptional in typically developing individuals. These associations support higher likelihood of causal link with alcohol in some individuals with non-syndromic FASD. A new explicit and composite neuroanatomical-radiological criterion can improve the specificity of FASD diagnosis.


Subject(s)
Fetal Alcohol Spectrum Disorders , Female , Male , Pregnancy , Humans , Retrospective Studies , Brain , Corpus Callosum , Ethanol
10.
Neuroimage ; 255: 119171, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35413445

ABSTRACT

MRI has been extensively used to identify anatomical and functional differences in Autism Spectrum Disorder (ASD). Yet, many of these findings have proven difficult to replicate because studies rely on small cohorts and are built on many complex, undisclosed, analytic choices. We conducted an international challenge to predict ASD diagnosis from MRI data, where we provided preprocessed anatomical and functional MRI data from > 2,000 individuals. Evaluation of the predictions was rigorously blinded. 146 challengers submitted prediction algorithms, which were evaluated at the end of the challenge using unseen data and an additional acquisition site. On the best algorithms, we studied the importance of MRI modalities, brain regions, and sample size. We found evidence that MRI could predict ASD diagnosis: the 10 best algorithms reliably predicted diagnosis with AUC∼0.80 - far superior to what can be currently obtained using genotyping data in cohorts 20-times larger. We observed that functional MRI was more important for prediction than anatomical MRI, and that increasing sample size steadily increased prediction accuracy, providing an efficient strategy to improve biomarkers. We also observed that despite a strong incentive to generalise to unseen data, model development on a given dataset faces the risk of overfitting: performing well in cross-validation on the data at hand, but not generalising. Finally, we were able to predict ASD diagnosis on an external sample added after the end of the challenge (EU-AIMS), although with a lower prediction accuracy (AUC=0.72). This indicates that despite being based on a large multisite cohort, our challenge still produced biomarkers fragile in the face of dataset shifts.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Autism Spectrum Disorder/diagnostic imaging , Autistic Disorder/diagnostic imaging , Biomarkers , Brain/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods
11.
Neurology ; 97(19): e1920-e1932, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34544816

ABSTRACT

BACKGROUND AND OBJECTIVES: We aimed to analyze the epidemiologic, clinical, and paraclinical features of adolescents with cerebral venous thrombosis (CVT) and its therapeutic management and outcome. METHODS: This multicenter retrospective cohort included patients 10 to 18 years of age hospitalized for a first episode of CVT in 2 French regions between 1999 and 2019. The number of cases was compared to the number recorded by the French health insurance system. The CVT registry of the Lariboisière hospital allowed comparisons with adults. RESULTS: One hundred two patients were included (52.9% female; median age 15.1 years). Estimated incidence was 0.37 to 0.38 per 100,000 adolescents per year; 45.5% of patients presented with focal deficits or seizures or in a coma. Male patients were younger than female patients (14.2 vs 15.6 years; p < 0.01) and more often admitted to intensive care (52.1% vs 24.1%; p = 0.0,035). The lateral sinus was the most common CVT location (72.3%), and 29.4% of adolescents had associated venous infarction or hematoma. Most patients (94.1%) received anticoagulation. Treatment also included an endovascular procedure (2.9%), decompressive craniectomy (4.9%), and CSF shunt (6.9%). The most frequently identified CVT-associated condition was local infection in male (18.6%) and systemic disease in female (14.8%; p < 0.001) patients. The proportion of CVTs in adolescents without an identified associated condition or risk factor was low (1.9% vs 11.4% in adults; p < 0.002). Adverse outcome at 1 year was more frequent than in adults (33.3% vs 11.8%; p = 0.0,001). DISCUSSION: CVT in adolescents is rare and complex with specific epidemiology, including differences in clinical presentation and associated conditions between sexes, and more severe outcomes than in adults. Careful specialized management and follow-up are therefore recommended.


Subject(s)
Intracranial Thrombosis , Venous Thrombosis , Adolescent , Adult , Female , Humans , Intracranial Thrombosis/complications , Intracranial Thrombosis/epidemiology , Male , Retrospective Studies , Risk Factors , Seizures/complications , Venous Thrombosis/complications , Venous Thrombosis/epidemiology , Venous Thrombosis/therapy
12.
Drug Alcohol Depend ; 225: 108748, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34058539

ABSTRACT

BACKGROUNDS: At birth, only complete Fetal Alcohol Syndrome (FAS) can be properly diagnosed. However, other Consequences of prenatal Alcohol Exposure (CAE) can also be recorded. Our objective was to describe the frequency of diagnoses highly suggestive of "potential Fetal Alcohol Syndrome Disorder" (pFASD, i.e., FAS and CAE) among hospitalized neonates, during the neonatal period, in France, between 2006 and 2013. METHODS: We used the French national hospital discharge database to identify the Q86.0 (FAS) and P04.3 (CAE) ICD-10 codes in hospital stays occurring in the first 28 days of life. FAS, CAE and pFASD rates were estimated per 1000 live births at the national level for the 2009-2013 period. We compared the 2006-2009 and 2010-2013 rates. The pFASD rates were also estimated at the regional level. RESULTS: Overall, 3,207 cases of pFASD were diagnosed during the neonatal period (i.e., 0.48 cases per 1000 live births, including 0.07 cases of FAS per 1000). Between 2006-2009 and 2010-2013, pFASD remained stable, despite a moderate decrease in reported FAS (0.08 vs 0.06 cases per 1000, p < 0.001). At the regional level, pFASD rates varied between 0.13 and 1.22 cases per 1000. CONCLUSIONS: This study provides the first national estimate of neonatal diagnosis of FAS, and more broadly pFASD, in France. Although our data certainly underestimate the real prevalence of FASD, they provide a minimal estimate of the burden of alcohol use during pregnancy. Observed variations deserve to be analyzed in the light of concomitant prevention and public information campaigns.


Subject(s)
Fetal Alcohol Spectrum Disorders , Prenatal Exposure Delayed Effects , Alcohol Drinking , Female , Fetal Alcohol Spectrum Disorders/diagnosis , Fetal Alcohol Spectrum Disorders/epidemiology , Hospitals , Humans , Infant, Newborn , Patient Discharge , Pregnancy
13.
Hum Mutat ; 42(4): 473-486, 2021 04.
Article in English | MEDLINE | ID: mdl-33600043

ABSTRACT

Hypomagnesemia, seizures, and intellectual disability (HSMR) syndrome is a rare disorder caused by mutations in the cyclin M2 (CNNM2) gene. Due to the limited number of cases, extensive phenotype analyses of these patients have not been performed, hindering early recognition of patients. In this study, we established the largest cohort of HSMR to date, aiming to improve recognition and diagnosis of this complex disorder. Eleven novel variants in CNNM2 were identified in nine single sporadic cases and in two families with suspected HSMR syndrome. 25 Mg2+ uptake assays demonstrated loss-of-function in seven out of nine variants in CNNM2. Interestingly, the pathogenic mutations resulted in decreased plasma membrane expression. The phenotype of those affected by pathogenic CNNM2 mutations was compared with five previously reported cases of HSMR. All patients suffered from hypomagnesemia (0.44-0.72 mmol/L), which could not be fully corrected by Mg2+ supplementation. The majority of patients (77%) experienced generalized seizures and exhibited mild to moderate intellectual disability and speech delay. Moreover, severe obesity was present in most patients (89%). Our data establish hypomagnesemia, seizures, intellectual disability, and obesity as hallmarks of HSMR syndrome. The assessment of these major features offers a straightforward tool for the clinical diagnosis of HSMR.


Subject(s)
Cation Transport Proteins , Intellectual Disability , Cation Transport Proteins/genetics , Cyclins/genetics , Heterozygote , Humans , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Mutation , Phenotype
16.
Eur J Neurosci ; 52(6): 3595-3609, 2020 09.
Article in English | MEDLINE | ID: mdl-31991019

ABSTRACT

Despite evidence for a difference in total brain volume between dyslexic and good readers, no previous neuroimaging study examined differences in allometric scaling (i.e. differences in the relationship between regional and total brain volumes) between dyslexic and good readers. The present study aims to fill this gap by testing differences in allometric scaling and regional brain volume differences in dyslexic and good readers. Object-based morphometry analysis was used to determine grey and white matter volumes of the four lobes, the cerebellum and limbic structures in 130 dyslexic and 106 good readers aged 8-14 years. Data were collected across three countries (France, Poland and Germany). Three methodological approaches were used as follows: principal component analysis (PCA), linear regression and multiple-group confirmatory factor analysis (MGCFA). Difference in total brain volume between good and dyslexic readers was Cohen's d = 0.39. We found no difference in allometric scaling, nor in regional brain volume between dyslexic and good readers. Results of our three methodological approaches (PCA, linear regression and MGCFA) were consistent. This study provides evidence for total brain volume differences between dyslexic and control children, but no evidence for differences in the volumes of the four lobes, the cerebellum or limbic structures, once allometry is taken into account. It also finds no evidence for a difference in allometric relationships between the groups. We highlight the methodological interest of the MGCFA approach to investigate such research issues.


Subject(s)
Dyslexia , Neuroanatomy , Brain Mapping , Child , Dyslexia/diagnostic imaging , Germany , Humans , Magnetic Resonance Imaging , Reading
17.
Stem Cell Res ; 41: 101592, 2019 12.
Article in English | MEDLINE | ID: mdl-31698189

ABSTRACT

The Renpenning syndrome spectrum is a rare X-linked mental retardation syndrome characterized by intellectual disability, microcephaly, low stature, lean body and hypogonadism. Mutations in the polyglutamine tract binding protein 1 (PQBP1) locus are causative for disease. Here, we describe the generation of an iPSC line from a patient mutated in the polar amino acid-rich domain of PQBP1 resulting in a C-terminal truncated protein (c.459_462 delAGAG, type p.R153fs193X).


Subject(s)
Base Sequence , Cerebral Palsy , DNA-Binding Proteins , Induced Pluripotent Stem Cells/metabolism , Mental Retardation, X-Linked , Sequence Deletion , Cell Line , Cerebral Palsy/genetics , Cerebral Palsy/metabolism , Cerebral Palsy/pathology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Induced Pluripotent Stem Cells/pathology , Male , Mental Retardation, X-Linked/genetics , Mental Retardation, X-Linked/metabolism , Mental Retardation, X-Linked/pathology
18.
Front Neurol ; 10: 753, 2019.
Article in English | MEDLINE | ID: mdl-31354616

ABSTRACT

CADASIL is a monogenic small vessel disease characterized by the accumulation of brain tissue lesions of microvascular origin leading to strokes and cognitive deficits. Both cortical and parenchymal alterations have been described using various MRI markers. However, relationships between cortical and subcortical alterations remain largely unexplored. While brain atrophy is a preponderant feature in cerebral small vessel disease, recent results in CADASIL suggest slightly larger brain volumes and increased white matter water content at early stages of the disease by comparison to controls. We hypothesized in this study that increased water content in gyral white matter balances expected brain atrophy. Direct white matter volume computation is challenging in these patients given widespread subcortical alterations. Instead, our approach was that a gyral white matter swelling would translate into a modification of the shape of cortical gyri. Our goal was then to assess the relationship between subcortical lesions and possible alteration of the cortex shape. More specifically, aims of this work were to assess 1) morphometric differences of the cortex shape between CADASIL patients and controls 2) the relationship between the cortex shape and the volume of white matter hyperintensities (WMH), a reflect of white matter alterations. Twenty-one patients at the early stage of the disease and 28 age- and sex-matched controls were included. Cortical surfaces were reconstructed from 3D-T1-weighted images. Folding power assessed from spectral analysis of gyrification and cortical morphometry using curvedness and shape index were computed as proxies of the cortex shape. Influence of segmentation errors were evaluated through the simulation of WMH in controls. As a result, patients had larger folding power and curvedness compared to controls. They also presented lower shape indices both related to sulci and gyri. In patients, the volume of WMH was associated with decreased gyral shape index. These results suggest that the cortex shape of CADASIL patients is different compared to controls and that the enlargement of gyri is related to the extent of white matter alterations. The study of the cortex shape might be another way to evaluate subcortical swelling or atrophy in various neurological disorders.

19.
Front Psychiatry ; 10: 11, 2019.
Article in English | MEDLINE | ID: mdl-30787884

ABSTRACT

While low plasma melatonin, a neuro-hormone synthesized in the pineal gland, has been frequently associated with autism, our understanding of the mechanisms behind it have remained unclear. In this exploratory study, we hypothesized that low melatonin levels in ASD could be linked to a decrease of the pineal gland volume (PGV). PGV estimates with magnetic resonance imaging (MRI) with a voxel-based volumetric measurement method and early morning plasma melatonin levels were evaluated for 215 participants, including 78 individuals with ASD, 90 unaffected relatives, and 47 controls. We first found that both early morning melatonin level and PGV were lower in patients compared to controls. We secondly built a linear model and observed that plasma melatonin was correlated to the group of the participant, but also to the PGV. To further understand the relationship between PGV and melatonin, we generated a normative model of the PGV relationship with melatonin level based on control participant data. We found an effect of PGV on normalized melatonin levels in ASD. Melatonin deficit appeared however more related to the group of the subject. Thus, melatonin variations in ASD could be mainly driven by melatonin pathway dysregulation.

20.
Neuroimage ; 185: 934-946, 2019 01 15.
Article in English | MEDLINE | ID: mdl-29522888

ABSTRACT

In the human brain, the appearance of cortical sulci is a complex process that takes place mostly during the second half of pregnancy, with a relatively stable temporal sequence across individuals. Since deviant gyrification patterns have been observed in many neurodevelopmental disorders, mapping cortical development in vivo from the early stages on is an essential step to uncover new markers for diagnosis or prognosis. Recently this has been made possible by MRI combined with post-processing tools, but the reported results are still fragmented. Here we aimed to characterize the typical folding progression ex utero from the pre- to the post-term period, by considering 58 healthy preterm and full-term newborns and infants imaged between 27 and 62 weeks of post-menstrual age. Using a method of spectral analysis of gyrification (SPANGY), we detailed the spatial-frequency structure of cortical patterns in a quantitative way. The modeling of developmental trajectories revealed three successive waves that might correspond to primary, secondary and tertiary folding. Some deviations were further detected in 10 premature infants without apparent neurological impairment and imaged at term equivalent age, suggesting that our approach is sensitive enough to highlight the subtle impact of preterm birth and extra-uterine life on folding.


Subject(s)
Cerebral Cortex/embryology , Cerebral Cortex/growth & development , Neuroimaging/methods , Cerebral Cortex/diagnostic imaging , Female , Humans , Image Processing, Computer-Assisted/methods , Infant, Newborn , Infant, Premature , Magnetic Resonance Imaging , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...