Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccine ; 42(4): 738-744, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38238112

ABSTRACT

In the quest for heightened protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, we engineered a prototype vaccine utilizing the plant expression system of Nicotiana benthamiana, to produce a recombinant SARS-CoV-2 virus-like particle (VLP) vaccine presenting the S-protein from the Beta (B.1.351) variant of concern (VOC). This innovative vaccine, formulated with either a squalene oil-in-water emulsion or a synthetic CpG oligodeoxynucleotide adjuvant, demonstrated efficacy in a golden Syrian Hamster challenge model. The Beta VLP vaccine induced a robust humoral immune response, with serum exhibiting neutralization not only against SARS-CoV-2 Beta but also cross-neutralizing Delta and Omicron pseudoviruses. Protective efficacy was demonstrated, evidenced by reduced viral RNA copies and mitigated weight loss and lung damage compared to controls. This compelling data instills confidence in the creation of a versatile platform for the local manufacturing of potential pan-sarbecovirus vaccines, against evolving viral threats.


Subject(s)
COVID-19 , Animals , Cricetinae , Humans , COVID-19/prevention & control , Mesocricetus , SARS-CoV-2 , COVID-19 Vaccines/genetics , Spike Glycoprotein, Coronavirus , Antibodies, Viral , Antibodies, Neutralizing
2.
Viruses ; 15(7)2023 06 21.
Article in English | MEDLINE | ID: mdl-37515096

ABSTRACT

The SARS-CoV-2 pandemic demonstrated the need for potent and broad-spectrum vaccines. This study reports the development and testing of a lumpy skin disease virus (LSDV)-vectored vaccine against SARS-CoV-2, utilizing stabilized spike and conserved nucleocapsid proteins as antigens to develop robust immunogenicity. Construction of the vaccine (LSDV-SARS2-S,N) was confirmed by polymerase chain reaction (PCR) amplification and sequencing. In vitro characterization confirmed that cells infected with LSDV-SARS2-S,N expressed SARS-CoV-2 spike and nucleocapsid protein. In BALB/c mice, the vaccine elicited high magnitude IFN-γ ELISpot responses (spike: 2808 SFU/106 splenocytes) and neutralizing antibodies (ID50 = 6552). Testing in hamsters, which emulate human COVID-19 disease progression, showed the development of high titers of neutralizing antibodies against the Wuhan and Delta SARS-CoV-2 variants (Wuhan ID50 = 2905; Delta ID50 = 4648). Additionally, hamsters vaccinated with LSDV-SARS2-S,N displayed significantly less weight loss, lung damage, and reduced viral RNA copies following SARS-CoV-2 infection with the Delta variant as compared to controls, demonstrating protection against disease. These data demonstrate that LSDV-vectored vaccines display promise as an effective SARS-CoV-2 vaccine and as a potential vaccine platform for communicable diseases in humans and animals. Further efficacy testing and immune response analysis, particularly in non-human primates, are warranted.


Subject(s)
COVID-19 , Lumpy skin disease virus , Vaccines , Animals , Cricetinae , Cattle , Mice , Humans , SARS-CoV-2/genetics , COVID-19 Vaccines , COVID-19/prevention & control , Antibodies, Neutralizing , Mice, Inbred BALB C , Nucleocapsid Proteins , Antibodies, Viral , Spike Glycoprotein, Coronavirus/genetics
3.
Front Plant Sci ; 14: 1146234, 2023.
Article in English | MEDLINE | ID: mdl-36959936

ABSTRACT

Molecular farming of vaccines has been heralded as a cheap, safe and scalable production platform. In reality, however, differences in the plant biosynthetic machinery, compared to mammalian cells, can complicate the production of viral glycoproteins. Remodelling the secretory pathway presents an opportunity to support key post-translational modifications, and to tailor aspects of glycosylation and glycosylation-directed folding. In this study, we applied an integrated host and glyco-engineering approach, NXS/T Generation™, to produce a SARS-CoV-2 prefusion spike trimer in Nicotiana benthamiana as a model antigen from an emerging virus. The size exclusion-purified protein exhibited a characteristic prefusion structure when viewed by transmission electron microscopy, and this was indistinguishable from the equivalent mammalian cell-produced antigen. The plant-produced protein was decorated with under-processed oligomannose N-glycans and exhibited a site occupancy that was comparable to the equivalent protein produced in mammalian cell culture. Complex-type glycans were almost entirely absent from the plant-derived material, which contrasted against the predominantly mature, complex glycans that were observed on the mammalian cell culture-derived protein. The plant-derived antigen elicited neutralizing antibodies against both the matched Wuhan and heterologous Delta SARS-CoV-2 variants in immunized hamsters, although titres were lower than those induced by the comparator mammalian antigen. Animals vaccinated with the plant-derived antigen exhibited reduced viral loads following challenge, as well as significant protection from SARS-CoV-2 disease as evidenced by reduced lung pathology, lower viral loads and protection from weight loss. Nonetheless, animals immunized with the mammalian cell-culture-derived protein were better protected in this challenge model suggesting that more faithfully reproducing the native glycoprotein structure and associated glycosylation of the antigen may be desirable.

4.
Vaccines (Basel) ; 8(4)2020 Nov 07.
Article in English | MEDLINE | ID: mdl-33171875

ABSTRACT

Lumpy skin disease is an important economic disease of cattle that is controlled by vaccination. This paper presents an investigation into the role of the lumpy skin disease virus (LSDV) superoxide dismutase (SOD) homologue on growth and histopathology of the virus both in vitro and in vivo. SOD homologue knock-out and knock-in recombinants (nLSDV∆SOD-UCT and nLSDVSODis-UCT, respectively) were constructed and compared to the Neethling vaccine (nLSDV) for growth in a permissive bovine cell line as well as on fertilized chick chorioallantoic membranes (CAMs). The infected CAMs were scored for histological changes. Deletion of the SOD homologue from LSDV reduced virus growth both in Madin-Darby bovine kidney (MDBK) cells as well as on CAMs. Furthermore, the knockout virus showed reduced inflammation in CAMs and more ballooning degeneration. A pilot experiment was performed in cattle to compare the lesions produced by the different LSDV constructs in the same animal. One animal developed a larger lesion to nLSDV∆SOD-UCT compared to both nLSDVSODis-UCT and nLSDV. Histological analysis of biopsies of these lesions shows less inflammation and necrosis associated with nLSDVSODis-UCT compared to nLSDV and nLSDV∆SOD-UCT. None of the vaccinated animals showed disseminated LSDV disease, indicating that the candidate vaccines are safe for further testing. Our results suggest that the SOD homologue may improve immunogenicity and reduce virulence.

5.
Vet Ital ; 52(3-4): 291-292, 2016 Sep 30.
Article in English | MEDLINE | ID: mdl-27723038

ABSTRACT

Bluetongue virus (BTV) was sporadically isolated over a four year period (2010-2014) from several alpaca carcasses that were presented for necropsy at the Western Cape Provincial Veterinary Laboratory, South Africa. Typically, the a ected animals had a history of acute dyspnoea and progressive weakness before death. Consistent hydrothorax and severe lung oedema in all lead to a preliminary diagnosis of Bluetongue, despite the absence of ulceration and hyperaemia of the oral mucosa which is characteristic of this viral infection in sheep. The diagnosis was con rmed by virus isolation in embryonated eggs and subsequent sequencing of the extracted RNA. Assembled sequences were subjected to Blast analysis and two of the isolates could be veri ed as BTV 3. These cases, originating from the Western Cape Province of South Africa, represents the rst o cial report of BTV infection in alpacas in Africa and demonstrates the susceptibility of the species to this disease when maintained in BTV endemic areas.


Subject(s)
Bluetongue virus/isolation & purification , Bluetongue/virology , Camelids, New World/virology , Animals , South Africa
6.
Avian Dis ; 56(4 Suppl): 966-8, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23402120

ABSTRACT

In 2011, over 35,000 ostriches were slaughtered in the Oudtshoorn district of the Western Cape province of South Africa following the diagnosis of highly pathogenic avian influenza virus H5N2. We describe the pathology and virus distribution via immunohistochemistry in juvenile birds that died rapidly in this outbreak after showing signs of depression and weakness. Associated sialic acid (SA) receptor distribution in uninfected birds is also described. At necropsy, enlarged spleens, swollen livers, and generalized congestion were noted. Birds not succumbing to acute influenza infection often became cachectic with serous atrophy of fat, airsacculitis, and secondary infections. Necrotizing hepatitis, splenitis, and airsacculitis were prominent histopathologic findings. Virus was detected via immunohistochemistry in abundance in the liver and spleen but also in the air sac and gastrointestinal tract. Infected cells included epithelium, endothelium, macrophages, circulating leukocytes, and smooth muscle of a variety of organs and vessel walls. Analysis of SA receptor distribution in uninfected juvenile ostriches via lectin binding showed abundant expression of SAalpha2,3Gal (avian type) and little or no expression of SAalpha2,6Gal (human type) in the gastrointestinal and respiratory tracts, as well as leukocytes in the spleen and endothelial cells in all organs, which correlated with H5N2 antigen distribution in these tissues.


Subject(s)
Influenza A Virus, H5N2 Subtype/pathogenicity , Influenza in Birds/virology , Struthioniformes , Animals , Disease Outbreaks/veterinary , Influenza A Virus, H5N2 Subtype/isolation & purification , Influenza in Birds/epidemiology , South Africa/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...