Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(32): 79269-79281, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37284949

ABSTRACT

Animals face many natural challenges, and humans have added to this burden by applying potentially harmful herbicides and unintentionally introducing competitors. We examine the recently introduced Velarifictorus micado Japanese burrowing cricket which shares the same microhabitat and mating season as the native Gryllus pennsylvanicus field cricket. In this study, we assess the combined effects of Roundup (glyphosate-based herbicide) and a lipopolysaccharide (LPS) immune challenge on both crickets. In both species, an immune challenge reduced the numbers of eggs that the female laid; however, this effect was much larger in G. pennsylvanicus. Conversely, Roundup caused both species to increase egg production, potentially representing a terminal investment strategy. When exposed to both an immune challenge and herbicide, G. pennsylvanicus fecundity was harmed more than V. micado fecundity. Furthermore, V. micado females laid significantly more eggs than G. pennsylvanicus, suggesting that introduced V. micado may have a competitive edge in fecundity over native G. pennsylvanicus. LPS and Roundup each had differing effects on male G. pennsylvanicus and V. micado calling effort. Overall, introduced male V. micado spent significantly more time calling than native G. pennsylvanicus, which could potentially facilitate the spread of this introduced species. Despite the population-level spread of introduced V. micado, in our study, this species did not outperform native G. pennsylvanicus in tolerating immune and chemical challenge. Although V. micado appears to possess traits that make this introduced species successful in colonizing new habitats, it may be less successful in traits that would allow it to outcompete a native species.


Subject(s)
Gryllidae , Herbicides , Animals , Humans , Male , Female , Lipopolysaccharides , Reproduction , Fertility
2.
J Evol Biol ; 35(2): 299-310, 2022 02.
Article in English | MEDLINE | ID: mdl-34882888

ABSTRACT

Variation in development time can affect life-history traits that contribute to fitness. In Gryllus vocalis, a non-diapausing cricket with variable development time, we used a path analysis approach to determine the causative relationships between parental age, offspring development time and offspring life-history traits. Our best-supported path model included both the effects of parental age and offspring development time on offspring morphological traits. This result suggests that offspring traits are influenced by both variation in acquisition of resources and trade-offs between traits. We found that crickets with longer development times became larger adults with better phenoloxidase-based immunity. This is consistent with the hypothesis that crickets must make a trade-off between developing quickly to avoid predation before reproduction and attaining better immunity and a larger adult body size that provides advantages in male-male competition, mate choice and female fecundity. Slower-developing crickets were also more likely to be short-winged (unable to disperse by flight). Parental age has opposing direct and indirect effects on the body size of daughters, but when both the direct and indirect effects of parental age are taken into account, younger parents had smaller sons and daughters. This pattern may be attributable to a parental trade-off between the number and size of eggs produced with younger parents producing more eggs with fewer resources per egg. The relationships between variables in the life-history traits of sons and daughters were similar, suggesting that parental age and development time had similar causative effects on male and female life-history traits.


Subject(s)
Gryllidae , Life History Traits , Animals , Body Size , Female , Male , Phenotype , Reproduction
3.
Proc Biol Sci ; 281(1792)2014 Oct 07.
Article in English | MEDLINE | ID: mdl-25143030

ABSTRACT

Recent work on Drosophila cuticular hydrocarbons (CHCs) challenges a historical assumption that CHCs in flies are largely invariant. Here, we examine the effect of time of day and social environment on a suite of sexually selected CHCs in Drosophila serrata. We demonstrate that males become more attractive to females during the time of day that flies are most active and when most matings occur, but females become less attractive to males during the same time of day. These opposing temporal changes may reflect differences in selection among the sexes. To evaluate the effect of social environment on male CHC attractiveness, we manipulated male opportunity for mating: male flies were housed either alone, with five females, with five males or with five males and five females. We found that males had the most attractive CHCs when with females, and less attractive CHCs when with competitor males. Social environment mediated how male CHC attractiveness cycled: males housed with females and/or other males showed temporal changes in CHC attractiveness, whereas males housed alone did not. In total, our results demonstrate temporal patterning of male CHCs that is dependent on social environment, and suggest that such changes may be beneficial to males.


Subject(s)
Drosophila/physiology , Hydrocarbons/metabolism , Mating Preference, Animal/physiology , Sex Attractants/metabolism , Sexual Behavior, Animal , Animals , Circadian Rhythm/physiology , Drosophila/metabolism , Female , Male , Sex Factors , Social Environment
4.
Proc Biol Sci ; 279(1738): 2531-8, 2012 Jul 07.
Article in English | MEDLINE | ID: mdl-22357263

ABSTRACT

Nuptial food gifts function to enhance male fertilization success, but their consumption is not always beneficial to females. In decorated crickets, the spermatophore transferred at mating includes a gelatinous mass, the spermatophylax, which is consumed by females after mating. However, females often discard spermatophylaxes shortly after mating, whereupon they terminate sperm transfer. We hypothesized that females discard gifts based on their assessment of the gift itself, and specifically the composition of free amino acids. We tested this hypothesis by comparing spermatophylaxes discarded by females after mating with those that were destined to be fully consumed, and employed multivariate selection analysis to quantify the strength and form of multivariate sexual selection operating on the free amino acid composition of gifts. The analysis yielded a saddle-shaped fitness surface with two local peaks. Different amino acid profiles appear to elicit continued feeding on the spermatophylax either because they offer the same level of gustatory appeal, or because they differentially affect both the gustatory appeal and texture of the spermatophylax. We conclude that the gustatory response of females to males' nuptial food gifts represents an important avenue of post-copulatory mate choice, imposing significant sexual selection on the free amino acid composition of the spermatophylax.


Subject(s)
Amino Acids/analysis , Gryllidae/physiology , Mating Preference, Animal/physiology , Spermatogonia/chemistry , Animals , Feeding Behavior , Female , Male , Reproduction/physiology , Sexual Behavior, Animal/physiology , Spermatogonia/physiology
5.
J Insect Behav ; 23(1): 59-68, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20046833

ABSTRACT

Female crickets can potentially gain both direct and indirect benefits from mating multiple times with different males. Most studies have only examined the effects of small numbers of matings, although female crickets are capable of mating many times. The goal of this paper is to examine the direct and indirect benefits of mating large numbers of times for female reproductive success. In a previous experiment, female Gryllus vocalis were found to gain diminishing direct benefits from mating large numbers of times. In this study I attempt to determine whether mating large numbers of times yields similar diminishing returns on female indirect benefits. Virgin female Gryllus vocalis crickets were assigned to mate five, ten or 15 times with either the same or different males. Females that mated more times gained direct benefits in terms of laying more eggs and more fertilized eggs. Females that mated with different males rather than mating repeatedly with the same male did not have higher offspring hatching success, a result that is contrary to other published results comparing female reproductive success with repeated versus different partners. These results suggest that females that mate large numbers of times fail to gain additional genetic benefits from doing so.

6.
Evolution ; 63(1): 67-72, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18826449

ABSTRACT

Although recent studies have demonstrated that female crickets prefer novel males to previous mates, the relative contribution of pre- and postcopulatory behaviors to this advantage remain unknown, as do the reproductive consequences to males. I paired females either with previous or novel mates, and recorded the latency to mating and the time after mating at which the female removed the male's spermatophore, terminating sperm transfer. Females that mated with familiar males removed their spermatophores sooner than females that mated with novel males. Females paired with novel males also mated more quickly than females paired with familiar males, but this difference was not statistically significant. A molecular-based paternity analysis was used to determine whether the postcopulatory preference of females for novel males influences a male's fertilization success. Females were assigned to either mate three times with the same male and then once with a novel male, or four times with four different males. The paternity of the last male was higher when the female previously had mated repeatedly with the same male than when she had mated previously with different males. These results suggest that female spermatophore removal behavior influences male paternity such that novel males receive a fertility benefit.


Subject(s)
Gryllidae/physiology , Animals , Female , Gryllidae/anatomy & histology , Male , Mating Preference, Animal , Reproduction
SELECTION OF CITATIONS
SEARCH DETAIL