Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 21209, 2020 Dec 03.
Article in English | MEDLINE | ID: mdl-33273594

ABSTRACT

Some of the best-performing high-temperature magnets are Sm-Co-based alloys with a microstructure that comprises an [Formula: see text] matrix and magnetically hard [Formula: see text] cell walls. This generates a dense domain-wall-pinning network that endows the material with remarkable magnetic hardness. A precise understanding of the coupling between magnetism and microstructure is essential for enhancing the performance of Sm-Co magnets, but experiments and theory have not yet converged to a unified model. Here, transmission electron microscopy, atom probe tomography, and nanometer-resolution off-axis electron holography have been combined with micromagnetic simulations to reveal that the magnetization state in Sm-Co magnets results from curling instabilities and domain-wall pinning effects at the intersections of phases with different magnetic hardness. Additionally, this study has found that topologically non-trivial magnetic domains separated by a complex network of domain walls play a key role in the magnetic state by acting as nucleation sites for magnetization reversal. These findings reveal previously hidden aspects of magnetism in Sm-Co magnets and, by identifying weak points in the microstructure, provide guidelines for improving these high-performance magnetic materials.

2.
Nat Commun ; 10(1): 4746, 2019 10 18.
Article in English | MEDLINE | ID: mdl-31628320

ABSTRACT

A key question in materials science is how fast properties evolve, which relates to the kinetics of phase transformations. In metals, kinetics is primarily connected to diffusion, which for substitutional elements is enabled via mobile atomic-lattice vacancies. In fact, non-equilibrium vacancies are often required for structural changes. Rapid quenching of various important alloys, such as Al- or Mg-alloys, results for example in natural aging, i.e. slight movements of solute atoms in the material, which significantly alter the material properties. In this study we demonstrate a size effect of natural aging in an AlMgSi alloy via atom probe tomography with near-atomic image resolution. We show that non-equilibrium vacancy diffusional processes are generally stopped when the sample size reaches the nanometer scale. This precludes clustering and natural aging in samples below a certain size and has implications towards the study of non-equilibrium diffusion and microstructural changes via microscopy techniques.

3.
Adv Struct Chem Imaging ; 3(1): 12, 2017.
Article in English | MEDLINE | ID: mdl-28529842

ABSTRACT

Environmental control during transfer between instruments is required for samples sensitive to air or thermal exposure to prevent morphological or chemical changes prior to analysis. Atom probe tomography is a rapidly expanding technique for three-dimensional structural and chemical analysis, but commercial instruments remain limited to loading specimens under ambient conditions. In this study, we describe a multifunctional environmental transfer hub allowing controlled cryogenic or room-temperature transfer of specimens under atmospheric or vacuum pressure conditions between an atom probe and other instruments or reaction chambers. The utility of the environmental transfer hub is demonstrated through the acquisition of previously unavailable mass spectral analysis of an intact organic molecule made possible via controlled cryogenic transfer into the atom probe using the hub. The ability to prepare and transfer specimens in precise environments promises a means to access new science across many disciplines from untainted samples and allow downstream time-resolved in situ atom probe studies.

4.
Nanotechnology ; 23(21): 215205, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22552162

ABSTRACT

Local electrode atom probe (LEAP) tomography of Al-catalyzed silicon nanowires synthesized by the vapor­liquid­solid method is presented. The concentration of Al within the Al-catalyzed nanowire was found to be 2 × 10(20) cm(-3), which is higher than the expected solubility limit for Al in Si at the nanowire growth temperature of 550°C. Reconstructions of the Al contained within the nanowire indicate a denuded region adjacent to the Al catalyst/Si nanowire interface, while Al clusters are distributed throughout the rest of the silicon nanowire.


Subject(s)
Aluminum/chemistry , Electrodes , Materials Testing/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Silicon/chemistry , Catalysis , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...