Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
Add more filters










Publication year range
1.
Nature ; 629(8010): 136-145, 2024 May.
Article in English | MEDLINE | ID: mdl-38570684

ABSTRACT

Human centromeres have been traditionally very difficult to sequence and assemble owing to their repetitive nature and large size1. As a result, patterns of human centromeric variation and models for their evolution and function remain incomplete, despite centromeres being among the most rapidly mutating regions2,3. Here, using long-read sequencing, we completely sequenced and assembled all centromeres from a second human genome and compared it to the finished reference genome4,5. We find that the two sets of centromeres show at least a 4.1-fold increase in single-nucleotide variation when compared with their unique flanks and vary up to 3-fold in size. Moreover, we find that 45.8% of centromeric sequence cannot be reliably aligned using standard methods owing to the emergence of new α-satellite higher-order repeats (HORs). DNA methylation and CENP-A chromatin immunoprecipitation experiments show that 26% of the centromeres differ in their kinetochore position by >500 kb. To understand evolutionary change, we selected six chromosomes and sequenced and assembled 31 orthologous centromeres from the common chimpanzee, orangutan and macaque genomes. Comparative analyses reveal a nearly complete turnover of α-satellite HORs, with characteristic idiosyncratic changes in α-satellite HORs for each species. Phylogenetic reconstruction of human haplotypes supports limited to no recombination between the short (p) and long (q) arms across centromeres and reveals that novel α-satellite HORs share a monophyletic origin, providing a strategy to estimate the rate of saltatory amplification and mutation of human centromeric DNA.


Subject(s)
Centromere , Evolution, Molecular , Genetic Variation , Animals , Humans , Centromere/genetics , Centromere/metabolism , Centromere Protein A/metabolism , DNA Methylation/genetics , DNA, Satellite/genetics , Kinetochores/metabolism , Macaca/genetics , Pan troglodytes/genetics , Polymorphism, Single Nucleotide/genetics , Pongo/genetics , Male , Female , Reference Standards , Chromatin Immunoprecipitation , Haplotypes , Mutation , Gene Amplification , Sequence Alignment , Chromatin/genetics , Chromatin/metabolism , Species Specificity
2.
J Cell Sci ; 137(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38606789

ABSTRACT

Robertsonian chromosomes form by fusion of two chromosomes that have centromeres located near their ends, known as acrocentric or telocentric chromosomes. This fusion creates a new metacentric chromosome and is a major mechanism of karyotype evolution and speciation. Robertsonian chromosomes are common in nature and were first described in grasshoppers by the zoologist W. R. B. Robertson more than 100 years ago. They have since been observed in many species, including catfish, sheep, butterflies, bats, bovids, rodents and humans, and are the most common chromosomal change in mammals. Robertsonian translocations are particularly rampant in the house mouse, Mus musculus domesticus, where they exhibit meiotic drive and create reproductive isolation. Recent progress has been made in understanding how Robertsonian chromosomes form in the human genome, highlighting some of the fundamental principles of how and why these types of fusion events occur so frequently. Consequences of these fusions include infertility and Down's syndrome. In this Hypothesis, I postulate that the conditions that allow these fusions to form are threefold: (1) sequence homology on non-homologous chromosomes, often in the form of repetitive DNA; (2) recombination initiation during meiosis; and (3) physical proximity of the homologous sequences in three-dimensional space. This Hypothesis highlights the latest progress in understanding human Robertsonian translocations within the context of the broader literature on Robertsonian chromosomes.


Subject(s)
Butterflies , Mice , Humans , Animals , Sheep/genetics , Butterflies/genetics , Chromosomes/genetics , Meiosis/genetics , Centromere , Translocation, Genetic/genetics , Mammals
3.
Nat Commun ; 14(1): 7947, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38040722

ABSTRACT

The centromere components cohesin, CENP-A, and centromeric DNA are essential for biorientation of sister chromatids on the mitotic spindle and accurate sister chromatid segregation. Insight into the 3D organization of centromere components would help resolve how centromeres function on the mitotic spindle. We use ChIP-seq and super-resolution microscopy with single particle averaging to examine the geometry of essential centromeric components on human chromosomes. Both modalities suggest cohesin is enriched at pericentromeric DNA. CENP-A localizes to a subset of the α-satellite DNA, with clusters separated by ~562 nm and a perpendicular intervening ~190 nM wide axis of cohesin in metaphase chromosomes. Differently sized α-satellite arrays achieve a similar core structure. Here we present a working model for a common core configuration of essential centromeric components that includes CENP-A nucleosomes, α-satellite DNA and pericentromeric cohesion. This configuration helps reconcile how centromeres function and serves as a foundation to add components of the chromosome segregation machinery.


Subject(s)
Centromere , DNA, Satellite , Humans , DNA, Satellite/genetics , Centromere Protein A/genetics , Centromere/metabolism , Mitosis , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Spindle Apparatus/metabolism , Chromatids/metabolism , Chromosome Segregation
4.
Elife ; 122023 Dec 15.
Article in English | MEDLINE | ID: mdl-38099650

ABSTRACT

Ribosome biogenesis is a vital and highly energy-consuming cellular function occurring primarily in the nucleolus. Cancer cells have an elevated demand for ribosomes to sustain continuous proliferation. This study evaluated the impact of existing anticancer drugs on the nucleolus by screening a library of anticancer compounds for drugs that induce nucleolar stress. For a readout, a novel parameter termed 'nucleolar normality score' was developed that measures the ratio of the fibrillar center and granular component proteins in the nucleolus and nucleoplasm. Multiple classes of drugs were found to induce nucleolar stress, including DNA intercalators, inhibitors of mTOR/PI3K, heat shock proteins, proteasome, and cyclin-dependent kinases (CDKs). Each class of drugs induced morphologically and molecularly distinct states of nucleolar stress accompanied by changes in nucleolar biophysical properties. In-depth characterization focused on the nucleolar stress induced by inhibition of transcriptional CDKs, particularly CDK9, the main CDK that regulates RNA Pol II. Multiple CDK substrates were identified in the nucleolus, including RNA Pol I- recruiting protein Treacle, which was phosphorylated by CDK9 in vitro. These results revealed a concerted regulation of RNA Pol I and Pol II by transcriptional CDKs. Our findings exposed many classes of chemotherapy compounds that are capable of inducing nucleolar stress, and we recommend considering this in anticancer drug development.


Ribosomes are cell structures within a compartment called the nucleolus that are required to make proteins, which are essential for cell function. Due to their uncontrolled growth and division, cancer cells require many proteins and therefore have a particularly high demand for ribosomes. Due to this, some anti-cancer drugs deliberately target the activities of the nucleolus. However, it was not clear if anti-cancer drugs with other targets also disrupt the nucleolus, which may result in side effects. Previously, it had been difficult to study how nucleoli work, partly because in human cells they vary naturally in shape, size, and number. Potapova et al. used fluorescent microscopy to develop a new way of assessing nucleoli based on the location and ratio of certain proteins. These measurements were used to calculate a "nucleolar normality score". Potapova et al. then tested over a thousand anti-cancer drugs in healthy and cancerous human cells. Around 10% of the tested drugs changed the nucleolar normality score when compared to placebo treatment, indicating that they caused nucleolar stress. For most of these drugs, the nucleolus was not the intended target, suggesting that disrupting it was an unintended side effect. Drugs inhibiting proteins called cyclin-dependent kinases caused the most drastic changes in the size and shape of nucleoli, disrupting them completely. These kinases are known to be involved in activating enzymes required for general transcription. Potapova et al. showed that they also are involved in production of ribosomal RNA, revealing an additional role in coordinating ribosome assembly. Taken together, the findings suggest that evaluating the effect of new anti-cancer drugs on the nucleolus could help to develop future treatments with less toxic side effects. The experiments also reveal new avenues for researching how cyclin-dependent kinases control the production of RNA more generally.


Subject(s)
Antineoplastic Agents , Cell Nucleolus , Cell Nucleolus/metabolism , Cell Nucleus/metabolism , Ribosomes/metabolism , RNA Polymerase I/metabolism , Cyclin-Dependent Kinases/metabolism , RNA Polymerase II/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/metabolism , RNA/metabolism
5.
Nature ; 621(7978): 344-354, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37612512

ABSTRACT

The human Y chromosome has been notoriously difficult to sequence and assemble because of its complex repeat structure that includes long palindromes, tandem repeats and segmental duplications1-3. As a result, more than half of the Y chromosome is missing from the GRCh38 reference sequence and it remains the last human chromosome to be finished4,5. Here, the Telomere-to-Telomere (T2T) consortium presents the complete 62,460,029-base-pair sequence of a human Y chromosome from the HG002 genome (T2T-Y) that corrects multiple errors in GRCh38-Y and adds over 30 million base pairs of sequence to the reference, showing the complete ampliconic structures of gene families TSPY, DAZ and RBMY; 41 additional protein-coding genes, mostly from the TSPY family; and an alternating pattern of human satellite 1 and 3 blocks in the heterochromatic Yq12 region. We have combined T2T-Y with a previous assembly of the CHM13 genome4 and mapped available population variation, clinical variants and functional genomics data to produce a complete and comprehensive reference sequence for all 24 human chromosomes.


Subject(s)
Chromosomes, Human, Y , Genomics , Sequence Analysis, DNA , Humans , Base Sequence , Chromosomes, Human, Y/genetics , DNA, Satellite/genetics , Genetic Variation/genetics , Genetics, Population , Genomics/methods , Genomics/standards , Heterochromatin/genetics , Multigene Family/genetics , Reference Standards , Segmental Duplications, Genomic/genetics , Sequence Analysis, DNA/standards , Tandem Repeat Sequences/genetics , Telomere/genetics
6.
bioRxiv ; 2023 May 30.
Article in English | MEDLINE | ID: mdl-37398417

ABSTRACT

We completely sequenced and assembled all centromeres from a second human genome and used two reference sets to benchmark genetic, epigenetic, and evolutionary variation within centromeres from a diversity panel of humans and apes. We find that centromere single-nucleotide variation can increase by up to 4.1-fold relative to other genomic regions, with the caveat that up to 45.8% of centromeric sequence, on average, cannot be reliably aligned with current methods due to the emergence of new α-satellite higher-order repeat (HOR) structures and two to threefold differences in the length of the centromeres. The extent to which this occurs differs depending on the chromosome and haplotype. Comparing the two sets of complete human centromeres, we find that eight harbor distinctly different α-satellite HOR array structures and four contain novel α-satellite HOR variants in high abundance. DNA methylation and CENP-A chromatin immunoprecipitation experiments show that 26% of the centromeres differ in their kinetochore position by at least 500 kbp-a property not readily associated with novel α-satellite HORs. To understand evolutionary change, we selected six chromosomes and sequenced and assembled 31 orthologous centromeres from the common chimpanzee, orangutan, and macaque genomes. Comparative analyses reveal nearly complete turnover of α-satellite HORs, but with idiosyncratic changes in structure characteristic to each species. Phylogenetic reconstruction of human haplotypes supports limited to no recombination between the p- and q-arms of human chromosomes and reveals that novel α-satellite HORs share a monophyletic origin, providing a strategy to estimate the rate of saltatory amplification and mutation of human centromeric DNA.

7.
Development ; 150(11)2023 06 01.
Article in English | MEDLINE | ID: mdl-37278344

ABSTRACT

The placenta is essential for reproductive success. The murine placenta includes polyploid giant cells that are crucial for its function. Polyploidy occurs broadly in nature but its regulators and significance in the placenta are unknown. We have discovered that many murine placental cell types are polyploid and have identified factors that license polyploidy using single-cell RNA sequencing. Myc is a key regulator of polyploidy and placental development, and is required for multiple rounds of DNA replication, likely via endocycles, in trophoblast giant cells. Furthermore, MYC supports the expression of DNA replication and nucleotide biosynthesis genes along with ribosomal RNA. Increased DNA damage and senescence occur in trophoblast giant cells without Myc, accompanied by senescence in the neighboring maternal decidua. These data reveal Myc is essential for polyploidy to support normal placental development, thereby preventing premature senescence. Our study, combined with available literature, suggests that Myc is an evolutionarily conserved regulator of polyploidy.


Subject(s)
Placenta , Trophoblasts , Animals , Female , Mice , Pregnancy , Placenta/metabolism , Placentation , Polyploidy , Trophoblasts/metabolism
8.
Nature ; 617(7960): 335-343, 2023 05.
Article in English | MEDLINE | ID: mdl-37165241

ABSTRACT

The short arms of the human acrocentric chromosomes 13, 14, 15, 21 and 22 (SAACs) share large homologous regions, including ribosomal DNA repeats and extended segmental duplications1,2. Although the resolution of these regions in the first complete assembly of a human genome-the Telomere-to-Telomere Consortium's CHM13 assembly (T2T-CHM13)-provided a model of their homology3, it remained unclear whether these patterns were ancestral or maintained by ongoing recombination exchange. Here we show that acrocentric chromosomes contain pseudo-homologous regions (PHRs) indicative of recombination between non-homologous sequences. Utilizing an all-to-all comparison of the human pangenome from the Human Pangenome Reference Consortium4 (HPRC), we find that contigs from all of the SAACs form a community. A variation graph5 constructed from centromere-spanning acrocentric contigs indicates the presence of regions in which most contigs appear nearly identical between heterologous acrocentric chromosomes in T2T-CHM13. Except on chromosome 15, we observe faster decay of linkage disequilibrium in the pseudo-homologous regions than in the corresponding short and long arms, indicating higher rates of recombination6,7. The pseudo-homologous regions include sequences that have previously been shown to lie at the breakpoint of Robertsonian translocations8, and their arrangement is compatible with crossover in inverted duplications on chromosomes 13, 14 and 21. The ubiquity of signals of recombination between heterologous acrocentric chromosomes seen in the HPRC draft pangenome suggests that these shared sequences form the basis for recurrent Robertsonian translocations, providing sequence and population-based confirmation of hypotheses first developed from cytogenetic studies 50 years ago9.


Subject(s)
Centromere , Chromosomes, Human , Recombination, Genetic , Humans , Centromere/genetics , Chromosomes, Human/genetics , DNA, Ribosomal/genetics , Recombination, Genetic/genetics , Translocation, Genetic/genetics , Cytogenetics , Telomere/genetics
9.
bioRxiv ; 2023 May 11.
Article in English | MEDLINE | ID: mdl-37214893

ABSTRACT

The biorientation of sister chromatids on the mitotic spindle, essential for accurate sister chromatid segregation, relies on critical centromere components including cohesin, the centromere-specific H3 variant CENP-A, and centromeric DNA. Centromeric DNA is highly variable between chromosomes yet must accomplish a similar function. Moreover, how the 50 nm cohesin ring, proposed to encircle sister chromatids, accommodates inter-sister centromeric distances of hundreds of nanometers on the metaphase spindle is a conundrum. Insight into the 3D organization of centromere components would help resolve how centromeres function on the mitotic spindle. We used ChIP-seq and super-resolution microscopy to examine the geometry of essential centromeric components on human chromosomes. ChIP-seq demonstrates that cohesin subunits are depleted in α-satellite arrays where CENP-A nucleosomes and kinetochores assemble. Cohesin is instead enriched at pericentromeric DNA. Structured illumination microscopy of sister centromeres is consistent, revealing a non-overlapping pattern of CENP-A and cohesin. We used single particle averaging of hundreds of mitotic sister chromatids to develop an average centromere model. CENP-A clusters on sister chromatids, connected by α-satellite, are separated by ~562 nm with a perpendicular intervening ~190 nM wide axis of cohesin. Two differently sized α-satellite arrays on chromosome 7 display similar inter-sister CENP-A cluster distance, demonstrating different sized arrays can achieve a common spacing. Our data suggest a working model for a common core configuration of essential centromeric components that includes CENP-A nucleosomes at the outer edge of extensible α-satellite DNA and pericentromeric cohesion. This configuration helps reconcile how centromeres function and serves as a foundation for future studies of additional components required for centromere function.

10.
Results Probl Cell Differ ; 70: 551-580, 2022.
Article in English | MEDLINE | ID: mdl-36348121

ABSTRACT

Eukaryotic genomes maintain multiple copies of ribosomal DNA gene repeats in tandem arrays to provide sufficient ribosomal RNAs to make ribosomes. These DNA repeats are the most highly transcribed regions of the genome, with dedicated transcriptional machinery to manage the enormous task of producing more than 50% of the total RNA in a proliferating cell. The arrays are called nucleolar organizer regions (NORs) and constitute the scaffold of the nucleolar compartment, where ribosome biogenesis occurs. Advances in molecular and cellular biology have brought great insights into how these arrays are transcribed and organized within genomes. Much of their biology is driven by their high transcription level, which has also driven the development of unique methods to understand rDNA gene activity, beginning with classic techniques such as silver staining and Miller spreads. However, the application of modern methodologies such as CRISPR gene editing, super-resolution microscopy, and long-read sequencing has enabled recent advances described herein, with many more discoveries possible soon. This chapter highlights what is known about NOR transcription and organization and the techniques applied historically and currently. Given the potential for NORs to impact organismal health and disease, as highlighted at the end of the chapter, the field must continue to develop and apply innovative analysis to understand genetic, epigenetic, and organizer properties of the ribosomal DNA repeats.


Subject(s)
Cell Nucleolus , Nucleolus Organizer Region , Cell Nucleolus/genetics , DNA, Ribosomal/genetics , DNA, Ribosomal/chemistry
11.
Nature ; 611(7936): 519-531, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36261518

ABSTRACT

The current human reference genome, GRCh38, represents over 20 years of effort to generate a high-quality assembly, which has benefitted society1,2. However, it still has many gaps and errors, and does not represent a biological genome as it is a blend of multiple individuals3,4. Recently, a high-quality telomere-to-telomere reference, CHM13, was generated with the latest long-read technologies, but it was derived from a hydatidiform mole cell line with a nearly homozygous genome5. To address these limitations, the Human Pangenome Reference Consortium formed with the goal of creating high-quality, cost-effective, diploid genome assemblies for a pangenome reference that represents human genetic diversity6. Here, in our first scientific report, we determined which combination of current genome sequencing and assembly approaches yield the most complete and accurate diploid genome assembly with minimal manual curation. Approaches that used highly accurate long reads and parent-child data with graph-based haplotype phasing during assembly outperformed those that did not. Developing a combination of the top-performing methods, we generated our first high-quality diploid reference assembly, containing only approximately four gaps per chromosome on average, with most chromosomes within ±1% of the length of CHM13. Nearly 48% of protein-coding genes have non-synonymous amino acid changes between haplotypes, and centromeric regions showed the highest diversity. Our findings serve as a foundation for assembling near-complete diploid human genomes at scale for a pangenome reference to capture global genetic variation from single nucleotides to structural rearrangements.


Subject(s)
Chromosome Mapping , Diploidy , Genome, Human , Genomics , Humans , Chromosome Mapping/standards , Genome, Human/genetics , Haplotypes/genetics , High-Throughput Nucleotide Sequencing/methods , High-Throughput Nucleotide Sequencing/standards , Sequence Analysis, DNA/methods , Sequence Analysis, DNA/standards , Reference Standards , Genomics/methods , Genomics/standards , Chromosomes, Human/genetics , Genetic Variation/genetics
12.
Curr Biol ; 32(13): 2884-2896.e6, 2022 07 11.
Article in English | MEDLINE | ID: mdl-35654035

ABSTRACT

The ring-like cohesin complex plays an essential role in chromosome segregation, organization, and double-strand break repair through its ability to bring two DNA double helices together. Scc2 (NIPBL in humans) together with Scc4 functions as the loader of cohesin onto chromosomes. Chromatin adapters such as the RSC complex facilitate the localization of the Scc2-Scc4 cohesin loader. Here, we identify a broad range of Scc2-chromatin protein interactions that are evolutionarily conserved and reveal a role for one complex, Mediator, in the recruitment of the cohesin loader. We identified budding yeast Med14, a subunit of the Mediator complex, as a high copy suppressor of poor growth in Scc2 mutant strains. Physical and genetic interactions between Scc2 and Mediator are functionally substantiated in direct recruitment and cohesion assays. Depletion of Med14 results in defective sister chromatid cohesion and the decreased binding of Scc2 at RNA Pol II-transcribed genes. Previous work has suggested that Mediator, Nipbl, and cohesin connect enhancers and promoters of active mammalian genes. Our studies suggest an evolutionarily conserved fundamental role for Mediator in the direct recruitment of Scc2 to RNA Pol II-transcribed genes.


Subject(s)
Chromosome Segregation , Saccharomyces cerevisiae Proteins , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chromatids/genetics , Chromatids/metabolism , Chromatin/genetics , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Humans , Mammals/genetics , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Cohesins
13.
Science ; 376(6588): eabl4178, 2022 04.
Article in English | MEDLINE | ID: mdl-35357911

ABSTRACT

Existing human genome assemblies have almost entirely excluded repetitive sequences within and near centromeres, limiting our understanding of their organization, evolution, and functions, which include facilitating proper chromosome segregation. Now, a complete, telomere-to-telomere human genome assembly (T2T-CHM13) has enabled us to comprehensively characterize pericentromeric and centromeric repeats, which constitute 6.2% of the genome (189.9 megabases). Detailed maps of these regions revealed multimegabase structural rearrangements, including in active centromeric repeat arrays. Analysis of centromere-associated sequences uncovered a strong relationship between the position of the centromere and the evolution of the surrounding DNA through layered repeat expansions. Furthermore, comparisons of chromosome X centromeres across a diverse panel of individuals illuminated high degrees of structural, epigenetic, and sequence variation in these complex and rapidly evolving regions.


Subject(s)
Centromere/genetics , Chromosome Mapping , Epigenesis, Genetic , Genome, Human , Evolution, Molecular , Genomics , Humans , Repetitive Sequences, Nucleic Acid
14.
Science ; 376(6588): eabk3112, 2022 04.
Article in English | MEDLINE | ID: mdl-35357925

ABSTRACT

Mobile elements and repetitive genomic regions are sources of lineage-specific genomic innovation and uniquely fingerprint individual genomes. Comprehensive analyses of such repeat elements, including those found in more complex regions of the genome, require a complete, linear genome assembly. We present a de novo repeat discovery and annotation of the T2T-CHM13 human reference genome. We identified previously unknown satellite arrays, expanded the catalog of variants and families for repeats and mobile elements, characterized classes of complex composite repeats, and located retroelement transduction events. We detected nascent transcription and delineated CpG methylation profiles to define the structure of transcriptionally active retroelements in humans, including those in centromeres. These data expand our insight into the diversity, distribution, and evolution of repetitive regions that have shaped the human genome.


Subject(s)
Epigenesis, Genetic , Genome, Human , Repetitive Sequences, Nucleic Acid , Telomere/genetics , Transcription, Genetic , Humans
15.
Development ; 148(24)2021 12 15.
Article in English | MEDLINE | ID: mdl-34935904

ABSTRACT

Aneuploidy is frequently observed in oocytes and early embryos, begging the question of how genome integrity is monitored and preserved during this crucial period. SMC3 is a subunit of the cohesin complex that supports genome integrity, but its role in maintaining the genome during this window of mammalian development is unknown. We discovered that, although depletion of Smc3 following meiotic S phase in mouse oocytes allowed accurate meiotic chromosome segregation, adult females were infertile. We provide evidence that DNA lesions accumulated following S phase in SMC3-deficient zygotes, followed by mitosis with lagging chromosomes, elongated spindles, micronuclei, and arrest at the two-cell stage. Remarkably, although centromeric cohesion was defective, the dosage of SMC3 was sufficient to enable embryogenesis in juvenile mutant females. Our findings suggest that, despite previous reports of aneuploidy in early embryos, chromosome missegregation in zygotes halts embryogenesis at the two-cell stage. Smc3 is a maternal gene with essential functions in the repair of spontaneous damage associated with DNA replication and subsequent chromosome segregation in zygotes, making cohesin a key protector of the zygotic genome.


Subject(s)
Cell Cycle Proteins/genetics , Chondroitin Sulfate Proteoglycans/genetics , Chromosomal Proteins, Non-Histone/genetics , DNA Replication/genetics , Embryonic Development/genetics , Mitosis/genetics , Aneuploidy , Animals , Centromere/genetics , Chromosome Segregation/genetics , Chromosomes/genetics , Genome/genetics , Maternal Inheritance/genetics , Meiosis/genetics , Mice , Oocytes/growth & development , Oocytes/metabolism , Zygote/growth & development , Cohesins
16.
Front Cell Dev Biol ; 9: 693742, 2021.
Article in English | MEDLINE | ID: mdl-34222262

ABSTRACT

Egg quality dictates fertility outcomes, and although there is a well-documented decline with advanced reproductive age, how it changes during puberty is less understood. Such knowledge is critical, since advances in Assisted Reproductive Technologies are enabling pre- and peri-pubertal patients to preserve fertility in the medical setting. Therefore, we investigated egg quality parameters in a mouse model of the pubertal transition or juvenescence (postnatal day; PND 11-40). Animal weight, vaginal opening, serum inhibin B levels, oocyte yield, oocyte diameter, and zona pellucida thickness increased with age. After PND 15, there was an age-associated ability of oocytes to resume meiosis and reach metaphase of meiosis II (MII) following in vitro maturation (IVM). However, eggs from the younger cohort (PND 16-20) had significantly more chromosome configuration abnormalities relative to the older cohorts and many were at telophase I instead of MII, indicative of a cell cycle delay. Oocytes from the youngest mouse cohorts originated from the smallest antral follicles with the fewest cumulus layers per oocyte, suggesting a more developmentally immature state. RNA Seq analysis of oocytes from mice at distinct ages revealed that the genes involved in cellular growth signaling pathways (PI3K, mTOR, and Hippo) were consistently repressed with meiotic competence, whereas genes involved in cellular communication were upregulated in oocytes with age. Taken together, these data demonstrate that gametes harvested during the pubertal transition have low meiotic maturation potential and derive from immature follicular origins.

18.
Nature ; 593(7857): 101-107, 2021 05.
Article in English | MEDLINE | ID: mdl-33828295

ABSTRACT

The complete assembly of each human chromosome is essential for understanding human biology and evolution1,2. Here we use complementary long-read sequencing technologies to complete the linear assembly of human chromosome 8. Our assembly resolves the sequence of five previously long-standing gaps, including a 2.08-Mb centromeric α-satellite array, a 644-kb copy number polymorphism in the ß-defensin gene cluster that is important for disease risk, and an 863-kb variable number tandem repeat at chromosome 8q21.2 that can function as a neocentromere. We show that the centromeric α-satellite array is generally methylated except for a 73-kb hypomethylated region of diverse higher-order α-satellites enriched with CENP-A nucleosomes, consistent with the location of the kinetochore. In addition, we confirm the overall organization and methylation pattern of the centromere in a diploid human genome. Using a dual long-read sequencing approach, we complete high-quality draft assemblies of the orthologous centromere from chromosome 8 in chimpanzee, orangutan and macaque to reconstruct its evolutionary history. Comparative and phylogenetic analyses show that the higher-order α-satellite structure evolved in the great ape ancestor with a layered symmetry, in which more ancient higher-order repeats locate peripherally to monomeric α-satellites. We estimate that the mutation rate of centromeric satellite DNA is accelerated by more than 2.2-fold compared to the unique portions of the genome, and this acceleration extends into the flanking sequence.


Subject(s)
Chromosomes, Human, Pair 8/chemistry , Chromosomes, Human, Pair 8/genetics , Evolution, Molecular , Animals , Cell Line , Centromere/chemistry , Centromere/genetics , Centromere/metabolism , Chromosomes, Human, Pair 8/physiology , DNA Methylation , DNA, Satellite/genetics , Epigenesis, Genetic , Female , Humans , Macaca mulatta/genetics , Male , Minisatellite Repeats/genetics , Pan troglodytes/genetics , Phylogeny , Pongo abelii/genetics , Telomere/chemistry , Telomere/genetics , Telomere/metabolism
19.
G3 (Bethesda) ; 11(6)2021 06 17.
Article in English | MEDLINE | ID: mdl-33729510

ABSTRACT

Tandem repeats are inherently unstable and exhibit extensive copy number polymorphisms. Despite mounting evidence for their adaptive potential, the mechanisms associated with regulation of the stability and copy number of tandem repeats remain largely unclear. To study copy number variation at tandem repeats, we used two well-studied repetitive arrays in the budding yeast genome, the ribosomal DNA (rDNA) locus, and the copper-inducible CUP1 gene array. We developed powerful, highly sensitive, and quantitative assays to measure repeat instability and copy number and used them in multiple high-throughput genetic screens to define pathways involved in regulating copy number variation. These screens revealed that rDNA stability and copy number are regulated by DNA replication, transcription, and histone acetylation. Through parallel studies of both arrays, we demonstrate that instability can be induced by DNA replication stress and transcription. Importantly, while changes in stability in response to stress are observed within a few cell divisions, a change in steady state repeat copy number requires selection over time. Further, H3K56 acetylation is required for regulating transcription and transcription-induced instability at the CUP1 array, and restricts transcription-induced amplification. Our work suggests that the modulation of replication and transcription is a direct, reversible strategy to alter stability at tandem repeats in response to environmental stimuli, which provides cells rapid adaptability through copy number variation. Additionally, histone acetylation may function to promote the normal adaptive program in response to transcriptional stress. Given the omnipresence of DNA replication, transcription, and chromatin marks like histone acetylation, the fundamental mechanisms we have uncovered significantly advance our understanding of the plasticity of tandem repeats more generally.


Subject(s)
Saccharomyces cerevisiae Proteins , Acetylation , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , DNA Copy Number Variations , Histones/genetics , Histones/metabolism , DNA, Ribosomal/genetics , DNA, Ribosomal/metabolism , Tandem Repeat Sequences/genetics , DNA Replication/genetics
20.
STAR Protoc ; 2(1): 100242, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33458704

ABSTRACT

Trophoblast cells are the first differentiated cells formed from a fertilized egg during mammalian development, and they secrete several autocrine and paracrine factors essential for sustaining pregnancy. In pathological conditions, these cells secrete various proinflammatory cytokines affecting both maternal and fetal health. Here, we provide a detailed protocol for isolation, maintenance, differentiation, and detection of factors secreted from trophoblast stem (TS) cells. This protocol provides conditions for inducing genotoxic stress in differentiated TS cells and detecting the effects on cytokine production. For complete details on the use and execution of this protocol, please refer to Singh et al. (2020).


Subject(s)
Cell Culture Techniques , Cell Differentiation , Cell Separation , Cytokines/metabolism , Stem Cells , Trophoblasts , Animals , Female , Mice , Pregnancy , Stem Cells/cytology , Stem Cells/metabolism , Trophoblasts/cytology , Trophoblasts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...