Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 163
Filter
1.
J Biol Chem ; : 107330, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38679329

ABSTRACT

The cannabinoid-type 2 receptor (CB2R), a G protein-coupled receptor (GPCR), is an important regulator of immune cell function and a promising target to treat chronic inflammation and fibrosis. While CB2R is typically targeted by small molecules, including endo-, phyto- and synthetic cannabinoids, peptides - owing to their size - may offer a different interaction space to facilitate differential interactions with the receptor. Here we explore plant-derived cyclic cystine-knot peptides as ligands of the CB2R. Cyclotides are known for their exceptional biochemical stability. Recently they gained attention as GPCR modulators and as templates for designing peptide ligands with improved pharmacokinetic properties over linear peptides. Cyclotide-based ligands for CB2R were profiled based on a peptide-enriched extract library comprising nine plants. Employing pharmacology-guided fractionation and peptidomics we identified cyclotide vodo-C1 from sweet violet (Viola odorata) as a full agonist of CB2R with an affinity (Ki) of 1µM and a potency (EC50) of 8µM. Leveraging deep learning networks we verified the structural topology of vodo-C1 and modelled its molecular volume in comparison to the CB2R ligand binding pocket. In a fragment-based approach we designed and characterized vodo-C1-based bicyclic peptides (vBCL1-4), aiming to reduce size and improve potency. Opposite to vodo-C1, the vBCL peptides lacked the ability to activate the receptor but acted as negative allosteric modulators or neutral antagonists of CB2R. This study introduces a macrocyclic peptide phytocannabinoid, which served as template for the development of synthetic CB2R peptide modulators. These findings offer opportunities for future peptide-based probe and drug development at cannabinoid receptors.

2.
Metabolism ; 153: 155793, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38295946

ABSTRACT

The Developmental Origins of Health and Disease hypothesis sustains that exposure to different stressors during prenatal development prepares the offspring for the challenges to be encountered after birth. We studied the gestational period as a particularly vulnerable window where different stressors can have strong implications for fetal programming of the offspring's life-long metabolic status via alterations of specific placentally expressed nutrient transporters. To study this mechanism, we used a murine prenatal stress model, human preeclampsia, early miscarriage, and healthy placental tissue samples, in addition to in vitro models of placental cells. In stressed mice, placental overexpression of L-type amino acid transporter 1 (Lat1) and subsequent global placental DNA hypermethylation was accompanied by fetal and adult hypothalamic dysregulation in global DNA methylation and gene expression as well as long-term metabolic abnormalities exclusively in female offspring. In human preeclampsia, early miscarriage, and under hypoxic conditions, placental LAT1 was significantly upregulated, leading to increased methionine uptake and global DNA hypermethylation. Remarkably, subgroups of healthy term placentas with high expression of stress-related genes presented increased levels of placental LAT1 mRNA and protein, DNA and RNA hypermethylation, increased methionine uptake capacity, one-carbon metabolic pathway disruption, higher methionine concentration in the placenta and transport to the fetus specifically in females. Since LAT1 mediates the intracellular accumulation of methionine, global DNA methylation, and one-carbon metabolism in the placenta, our findings hint at a major sex-specific global response to a variety of prenatal stressors affecting placental function, epigenetic programming, and life-long metabolic disease and provide a much-needed insight into early-life factors predisposing females/women to metabolic disorders.


Subject(s)
Epigenesis, Genetic , Fetal Development , Genetic Predisposition to Disease , Large Neutral Amino Acid-Transporter 1 , Metabolic Diseases , Methionine , Placenta , Adult , Animals , Female , Humans , Male , Mice , Pregnancy , Abortion, Spontaneous , Adaptor Proteins, Signal Transducing , Metabolic Diseases/genetics , Methionine/metabolism , Placenta/metabolism , Pre-Eclampsia , Racemethionine , DNA Methylation , Large Neutral Amino Acid-Transporter 1/genetics , Large Neutral Amino Acid-Transporter 1/metabolism
3.
Br J Pharmacol ; 180 Suppl 2: S289-S373, 2023 10.
Article in English | MEDLINE | ID: mdl-38123154

ABSTRACT

The Concise Guide to PHARMACOLOGY 2023/24 is the sixth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of approximately 1800 drug targets, and about 6000 interactions with about 3900 ligands. There is an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes almost 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.16176. In addition to this overview, in which are identified 'Other protein targets' which fall outside of the subsequent categorisation, there are six areas of focus: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2023, and supersedes data presented in the 2021/22, 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Subject(s)
Databases, Pharmaceutical , Ion Channels , Humans , Ligands , Receptors, Cytoplasmic and Nuclear , Receptors, G-Protein-Coupled
4.
Phytochemistry ; 213: 113770, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37331573

ABSTRACT

Bioactivity-guided isolation of natural products from plant matrices is widely used in drug discovery. Here, this strategy was applied to identify trypanocidal coumarins effective against the parasite Trypanosoma cruzi, the etiologic agent of Chagas disease (American trypanosomiasis). Previously, phylogenetic relationships of trypanocidal activity revealed a coumarin-associated antichagasic hotspot in the Apiaceae. In continuation, a total of 35 ethyl acetate extracts of different Apiaceae species were profiled for selective cytotoxicity against T. cruzi epimastigotes over host CHO-K1 and RAW264.7 cells at 10 µg/mL. A flow cytometry-based T. cruzi trypomastigote cellular infection assay was employed to measure toxicity against the intracellular amastigote stage. Among the tested extracts, Seseli andronakii aerial parts, Portenschlagiella ramosissima and Angelica archangelica subsp. litoralis roots exhibited selective trypanocidal activity and were subjected to bioactivity-guided fractionation and isolation by countercurrent chromatography. The khellactone ester isosamidin isolated from the aerial parts of S. andronakii emerged as a selective trypanocidal molecule (selectivity index ∼9) and inhibited amastigote replication in CHO-K1 cells, though it was significantly less potent than benznidazole. The khellactone ester praeruptorin B and the linear dihydropyranochromones 3'-O-acetylhamaudol and ledebouriellol isolated from the roots of P. ramosissima were more potent and efficiently inhibited the intracellular amastigote replication at < 10 µM. The furanocoumarins imperatorin, isoimperatorin and phellopterin from A. archangelica inhibited T. cruzi replication in host cells only in combination, indicative of superadditive effects, while alloimperatorin was more active in fractions. Our study reports preliminary structure-activity relationships of trypanocidal coumarins and shows that pyranocoumarins and dihydropyranochromones are potential chemical scaffolds for antichagasic drug discovery.


Subject(s)
Chagas Disease , Trypanocidal Agents , Trypanosoma cruzi , Phylogeny , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/therapeutic use , Chagas Disease/drug therapy , Chagas Disease/parasitology , Coumarins/pharmacology , Coumarins/chemistry , Esters , Plant Extracts/pharmacology
5.
Cells ; 12(11)2023 06 04.
Article in English | MEDLINE | ID: mdl-37296660

ABSTRACT

Zebrafish (Danio rerio) assays provide a versatile pharmacological platform to test compounds on a wide range of behaviors in a whole organism. A major challenge lies in the lack of knowledge about the bioavailability and pharmacodynamic effects of bioactive compounds in this model organism. Here, we employed a combined methodology of LC-ESI-MS/MS analytics and targeted metabolomics with behavioral experiments to evaluate the anticonvulsant and potentially toxic effects of the angular dihydropyranocoumarin pteryxin (PTX) in comparison to the antiepileptic drug sodium valproate (VPN) in zebrafish larvae. PTX occurs in different Apiaceae plants traditionally used in Europe to treat epilepsy but has not been investigated so far. To compare potency and efficacy, the uptake of PTX and VPN into zebrafish larvae was quantified as larvae whole-body concentrations together with amino acids and neurotransmitters as proxy pharmacodynamic readout. The convulsant agent pentylenetetrazole (PTZ) acutely reduced the levels of most metabolites, including acetylcholine and serotonin. Conversely, PTX strongly reduced neutral essential amino acids in a LAT1 (SLCA5)-independent manner, but, similarly to VPN specifically increased the levels of serotonin, acetylcholine, and choline, but also ethanolamine. PTX dose and time-dependent manner inhibited PTZ-induced seizure-like movements resulting in a ~70% efficacy after 1 h at 20 µM (the equivalent of 4.28 ± 0.28 µg/g in larvae whole-body). VPN treated for 1 h with 5 mM (the equivalent of 18.17 ± 0.40 µg/g in larvae whole-body) showed a ~80% efficacy. Unexpectedly, PTX (1-20 µM) showed significantly higher bioavailability than VPN (0.1-5 mM) in immersed zebrafish larvae, possibly because VPN in the medium dissociated partially to the readily bioavailable valproic acid. The anticonvulsive effect of PTX was confirmed by local field potential (LFP) recordings. Noteworthy, both substances specifically increased and restored whole-body acetylcholine, choline, and serotonin levels in control and PTZ-treated zebrafish larvae, indicative of vagus nerve stimulation (VNS), which is an adjunctive therapeutic strategy to treat refractory epilepsy in humans. Our study demonstrates the utility of targeted metabolomics in zebrafish assays and shows that VPN and PTX pharmacologically act on the autonomous nervous system by activating parasympathetic neurotransmitters.


Subject(s)
Pentylenetetrazole , Vagus Nerve Stimulation , Humans , Animals , Pentylenetetrazole/toxicity , Valproic Acid/pharmacology , Valproic Acid/therapeutic use , Zebrafish/physiology , Serotonin , Acetylcholine , Tandem Mass Spectrometry , Seizures/chemically induced , Seizures/drug therapy , Seizures/metabolism , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Choline
6.
Phytochemistry ; 213: 113781, 2023 09.
Article in English | MEDLINE | ID: mdl-37385364
7.
Pharmacol Rev ; 75(5): 885-958, 2023 09.
Article in English | MEDLINE | ID: mdl-37164640

ABSTRACT

The cannabis derivative marijuana is the most widely used recreational drug in the Western world and is consumed by an estimated 83 million individuals (∼3% of the world population). In recent years, there has been a marked transformation in society regarding the risk perception of cannabis, driven by its legalization and medical use in many states in the United States and worldwide. Compelling research evidence and the Food and Drug Administration cannabis-derived cannabidiol approval for severe childhood epilepsy have confirmed the large therapeutic potential of cannabidiol itself, Δ9-tetrahydrocannabinol and other plant-derived cannabinoids (phytocannabinoids). Of note, our body has a complex endocannabinoid system (ECS)-made of receptors, metabolic enzymes, and transporters-that is also regulated by phytocannabinoids. The first endocannabinoid to be discovered 30 years ago was anandamide (N-arachidonoyl-ethanolamine); since then, distinct elements of the ECS have been the target of drug design programs aimed at curing (or at least slowing down) a number of human diseases, both in the central nervous system and at the periphery. Here a critical review of our knowledge of the goods and bads of the ECS as a therapeutic target is presented to define the benefits of ECS-active phytocannabinoids and ECS-oriented synthetic drugs for human health. SIGNIFICANCE STATEMENT: The endocannabinoid system plays important roles virtually everywhere in our body and is either involved in mediating key processes of central and peripheral diseases or represents a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of the components of this complex system, and in particular of key receptors (like cannabinoid receptors 1 and 2) and metabolic enzymes (like fatty acid amide hydrolase and monoacylglycerol lipase), will advance our understanding of endocannabinoid signaling and activity at molecular, cellular, and system levels, providing new opportunities to treat patients.


Subject(s)
Cannabidiol , Cannabinoids , Cannabis , Hallucinogens , Humans , Child , Endocannabinoids/metabolism , Cannabidiol/therapeutic use , Cannabinoids/pharmacology , Cannabinoids/therapeutic use , Cannabinoids/metabolism , Dronabinol , Cannabis/chemistry , Cannabis/metabolism , Carrier Proteins , Cannabinoid Receptor Agonists
8.
Methods Mol Biol ; 2576: 329-348, 2023.
Article in English | MEDLINE | ID: mdl-36152200

ABSTRACT

Endocannabinoids at nanomolar physiological concentrations cross cellular membranes by facilitated diffusion, a process that can be studied by measuring transport kinetics and endocannabinoid trafficking employing radioligands and mass spectrometry. Here, we describe radiosubstrate-based assays using arachidonoyl[1-3H]ethanolamine and 2-arachidonoyl[1,2,3-3H]glycerol to measure cellular endocannabinoid uptake in a three-phase assay with human U937 cells. Liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS/MS)-based lipidomics was used to interrogate the roles of serum and albumin for endocannabinoid trafficking in U937 cells.


Subject(s)
Endocannabinoids , Tandem Mass Spectrometry , Albumins , Ethanolamines , Glycerol , Humans , Tandem Mass Spectrometry/methods
9.
ChemMedChem ; 17(17): e202200308, 2022 09 05.
Article in English | MEDLINE | ID: mdl-35895286

ABSTRACT

A series of derivatives of the substrate amino acid l-tryptophan have been investigated for inhibition of the L-type amino acid transporter LAT1 (SLC7A5), which is an emerging target in anticancer drug discovery. Of the four isomeric 4-, 5-, 6-, or 7-benzyloxy-l-tryptophans, the 5-substituted derivative was the most potent, with an IC50 of 19 µM for inhibition of [3 H]-l-leucine uptake into HT-29 human colon carcinoma cells. The replacement of the carboxy group in 5-benzyloxy-l-tryptophan by a bioisosteric tetrazole moiety led to a complete loss in potency. Likewise, the corresponding tetrazolide derived from l-tryptophan itself was found to be neither a substrate nor an inhibitor of the transporter. Increasing the steric bulk at the 5-position, while reasonably well tolerated in some cases, did not result in an improvement in potency. At the same time, none of these derivatives was found to be a substrate for LAT1-mediated transport.


Subject(s)
Large Neutral Amino Acid-Transporter 1 , Tryptophan , Amino Acids/metabolism , Drug Discovery , Humans , Large Neutral Amino Acid-Transporter 1/metabolism , Tryptophan/pharmacology
10.
Chem Sci ; 13(19): 5539-5545, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35694350

ABSTRACT

Despite its essential role in the (patho)physiology of several diseases, CB2R tissue expression profiles and signaling mechanisms are not yet fully understood. We report the development of a highly potent, fluorescent CB2R agonist probe employing structure-based reverse design. It commences with a highly potent, preclinically validated ligand, which is conjugated to a silicon-rhodamine fluorophore, enabling cell permeability. The probe is the first to preserve interspecies affinity and selectivity for both mouse and human CB2R. Extensive cross-validation (FACS, TR-FRET and confocal microscopy) set the stage for CB2R detection in endogenously expressing living cells along with zebrafish larvae. Together, these findings will benefit clinical translatability of CB2R based drugs.

11.
J Med Chem ; 65(10): 7118-7140, 2022 05 26.
Article in English | MEDLINE | ID: mdl-35522977

ABSTRACT

Monoacylglycerol lipase (MAGL) is the enzyme responsible for the metabolism of 2-arachidonoylglycerol in the brain and the hydrolysis of peripheral monoacylglycerols. Many studies demonstrated beneficial effects deriving from MAGL inhibition for neurodegenerative diseases, inflammatory pathologies, and cancer. MAGL expression is increased in invasive tumors, furnishing free fatty acids as pro-tumorigenic signals and for tumor cell growth. Here, a new class of benzylpiperidine-based MAGL inhibitors was synthesized, leading to the identification of 13, which showed potent reversible and selective MAGL inhibition. Associated with MAGL overexpression and the prognostic role in pancreatic cancer, derivative 13 showed antiproliferative activity and apoptosis induction, as well as the ability to reduce cell migration in primary pancreatic cancer cultures, and displayed a synergistic interaction with the chemotherapeutic drug gemcitabine. These results suggest that the class of benzylpiperidine-based MAGL inhibitors have potential as a new class of therapeutic agents and MAGL could play a role in pancreatic cancer.


Subject(s)
Monoacylglycerol Lipases , Pancreatic Neoplasms , Cell Proliferation , Enzyme Inhibitors/metabolism , Humans , Monoglycerides/pharmacology , Pancreatic Neoplasms/drug therapy
12.
Nat Commun ; 13(1): 1783, 2022 04 04.
Article in English | MEDLINE | ID: mdl-35379807

ABSTRACT

Activation of the cannabinoid-1 receptor (CB1R) and the mammalian target of rapamycin complex 1 (mTORC1) in the renal proximal tubular cells (RPTCs) contributes to the development of diabetic kidney disease (DKD). However, the CB1R/mTORC1 signaling axis in the kidney has not been described yet. We show here that hyperglycemia-induced endocannabinoid/CB1R stimulation increased mTORC1 activity, enhancing the transcription of the facilitative glucose transporter 2 (GLUT2) and leading to the development of DKD in mice; this effect was ameliorated by specific RPTCs ablation of GLUT2. Conversely, CB1R maintained the normal activity of mTORC1 by preventing the cellular excess of amino acids during normoglycemia. Our findings highlight a novel molecular mechanism by which the activation of mTORC1 in RPTCs is tightly controlled by CB1R, either by enhancing the reabsorption of glucose and inducing kidney dysfunction in diabetes or by preventing amino acid uptake and maintaining normal kidney function in healthy conditions.


Subject(s)
Diabetic Nephropathies , Receptor, Cannabinoid, CB1 , Animals , Diabetic Nephropathies/pathology , Kidney/metabolism , Kidney Tubules, Proximal/metabolism , Mammals , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB1/metabolism
13.
Sci Rep ; 12(1): 822, 2022 01 17.
Article in English | MEDLINE | ID: mdl-35039558

ABSTRACT

Scoparone (6,7-dimethoxycoumarin) is a simple coumarin from botanical drugs of Artemisia species used in Traditional Chinese Medicine and Génépi liquor. However, its bioavailability to the brain and potential central effects remain unexplored. We profiled the neuropharmacological effects of scoparone upon acute and subchronic intraperitoneal administration (2.5-25 mg/kg) in Swiss mice and determined its brain concentrations and its effects on the endocannabinoid system (ECS) and related lipids using LC-ESI-MS/MS. Scoparone showed no effect in the forced swimming test (FST) but, administered acutely, led to a bell-shaped anxiogenic-like behavior in the elevated plus-maze test and bell-shaped procognitive effects in the passive avoidance test when given subchronically and acutely. Scoparone rapidly but moderately accumulated in the brain (Cmax < 15 min) with an apparent first-order elimination (95% eliminated at 1 h). Acute scoparone administration (5 mg/kg) significantly increased brain arachidonic acid, prostaglandins, and N-acylethanolamines (NAEs) in the FST. Conversely, subchronic scoparone treatment (2.5 mg/kg) decreased NAEs and increased 2-arachidonoylglycerol. Scoparone differentially impacted ECS lipid remodeling in the brain independent of serine hydrolase modulation. Overall, the unexpectedly potent central effects of scoparone observed in mice could have toxicopharmacological implications for humans.


Subject(s)
Brain/metabolism , Coumarins/pharmacology , Animals , Arachidonic Acid/metabolism , Arachidonic Acids/metabolism , Avoidance Learning/drug effects , Behavior, Animal/drug effects , Biological Availability , Cognition/drug effects , Coumarins/administration & dosage , Coumarins/pharmacokinetics , Endocannabinoids/metabolism , Ethanolamines/metabolism , Glycerides/metabolism , Infusions, Parenteral , Lipid Metabolism , Male , Maze Learning/drug effects , Mice , Prostaglandins/metabolism
14.
Chimia (Aarau) ; 76(12): 1011-1018, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-38069796

ABSTRACT

Amino acids are essential components of all living cells serving as building blocks of proteins, as energy source, and as precursors of metabolites and signaling molecules. Amino acid transporters are membrane proteins that mediate the transfer of amino acids across the plasma membrane, and between compartments in cells, different cells and organs. The absence, overexpression or malfunction of specific amino acid transporters have been associated with human disease. One of the projects within the Swiss National Centre of Competence in Research (NCCR) TransCure was directed at SLC7 family amino acid transporters, with a particular focus on the heteromeric amino acid transporters 4F2hc-LAT1 (SLC3A2-SLC7A5) and 4F2hc-LAT2 (SLC3A2-SLC7A8), and the bacterial homologue AdiC. The project addressed questions of basic research (function and structure), pharmacology (identification of potent inhibitors and activators), and pre-clinical medicine (e.g., physiological role in the placenta) and disease models (e.g., tumor progression) of specific SLC7 family amino acid transporters. This review presents, summarizes and discusses selected main results obtained in this NCCR TransCure project.

15.
Planta Med ; 87(14): 1123-1127, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34763356
16.
Antioxidants (Basel) ; 10(10)2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34679776

ABSTRACT

Piper spices represent an inexhaustible reservoir of bioactive compounds that may act as drug leads in natural product research. The aim of this study was to investigate a series of methanolic fruit extracts obtained from P. nigrum (black, green, white and red), P. longum and P. retrofractum in comparative phytochemical and multi-directional biological (antimicrobial, antioxidant, anti-enzymatic and anti-melanogenic) assays. The metabolite profiling revealed the presence of 17 piperamides, with a total content of 247.75-591.42 mg piperine equivalents/g. Among the 22 tested microorganism strains, Piper spices were significantly active (MIC < 0.1 mg/mL) against the anaerobes Actinomyces israelii and Fusobacterium nucleatum. The antioxidant and anti-enzymatic activities were evidenced in DPPH (10.64-82.44 mg TE/g) and ABTS (14.20-77.60 mg TE/g) radical scavenging, CUPRAC (39.94-140.52 mg TE/g), FRAP (16.05-77.00 mg TE/g), chelating (0-34.80 mg EDTAE/g), anti-acetylcholinesterase (0-2.27 mg GALAE/g), anti-butyrylcholinesterase (0.60-3.11 mg GALAE/g), anti-amylase (0.62-1.11 mmol ACAE/g) and anti-glucosidase (0-1.22 mmol ACAE/g) assays. Several Piper extracts (10 µg/mL) inhibited both melanin synthesis (to 32.05-60.65% of αMSH+ cells) and release (38.06-45.78% of αMSH+ cells) in αMSH-stimulated B16F10 cells, partly explained by their tyrosinase inhibitory properties. Our study uncovers differences between Piper spices and sheds light on their potential use as nutraceuticals or cosmeceuticals for the management of different diseases linked to bacterial infections, Alzheimer's dementia, type 2 diabetes mellitus or hyperpigmentation.

17.
Br J Pharmacol ; 178 Suppl 1: S313-S411, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34529828

ABSTRACT

The Concise Guide to PHARMACOLOGY 2021/22 is the fifth in this series of biennial publications. The Concise Guide provides concise overviews, mostly in tabular format, of the key properties of nearly 1900 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide constitutes over 500 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/bph.15542. Enzymes are one of the six major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, ion channels, nuclear hormone receptors, catalytic receptors and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2021, and supersedes data presented in the 2019/20, 2017/18, 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature and Standards Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Subject(s)
Databases, Pharmaceutical , Pharmacology , Humans , Ion Channels , Ligands , Receptors, Cytoplasmic and Nuclear , Receptors, G-Protein-Coupled
18.
J Nat Prod ; 84(9): 2502-2510, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34304557

ABSTRACT

The cis-stereoisomers of Δ9-THC [(-)-3 and (+)-3] were identified and quantified in a series of low-THC-containing varieties of Cannabis sativa registered in Europe as fiber hemp and in research accessions of cannabis. While Δ9-cis-THC (3) occurs in cannabis fiber hemp in the concentration range of (-)-Δ9-trans-THC [(-)-1], it was undetectable in a sample of high-THC-containing medicinal cannabis. Natural Δ9-cis-THC (3) is scalemic (ca. 80-90% enantiomeric purity), and the absolute configuration of the major enantiomer was established as 6aS,10aR [(-)-3] by chiral chromatographic comparison with a sample available by asymmetric synthesis. The major enantiomer, (-)-Δ9-cis-THC [(-)-3], was characterized as a partial cannabinoid agonist in vitro and elicited a full tetrad response in mice at 50 mg/kg doses. The current legal discrimination between narcotic and non-narcotic cannabis varieties centers on the contents of "Δ9-THC and isomers" and needs therefore revision, or at least a more specific wording, to account for the presence of Δ9-cis-THCs [(+)-3 and (-)-3] in cannabis fiber hemp varieties.


Subject(s)
Cannabinoids/agonists , Dronabinol/pharmacology , Animals , Cannabis/chemistry , Dronabinol/chemistry , Male , Mice , Mice, Inbred BALB C , Molecular Structure , Stereoisomerism
19.
iScience ; 24(4): 102310, 2021 Apr 23.
Article in English | MEDLINE | ID: mdl-33870129

ABSTRACT

Globally, more than six million people are infected with Trypanosoma cruzi, the causative protozoan parasite of the vector-borne Chagas disease (CD). We conducted a cross-sectional ethnopharmacological field study in Bolivia among different ethnic groups where CD is hyperendemic. A total of 775 extracts of botanical drugs used in Bolivia in the context of CD and botanical drugs from unrelated indications from the Mediterranean De Materia Medica compiled by Dioscorides two thousand years ago were profiled in a multidimensional assay uncovering different antichagasic natural product classes. Intriguingly, the phylobioactive anthraquinone hotspot matched the antichagasic activity of Senna chloroclada, the taxon with the strongest ethnomedical consensus for treating CD among the Izoceño-Guaraní. Testing common 9,10-anthracenedione derivatives in T. cruzi cellular infection assays demarcates hydroxyanthraquinone as a potential antichagasic lead scaffold. Our study systematically uncovers in vitro antichagasic phylogenetic hotspots in the plant kingdom as a potential resource for drug discovery based on ethnopharmacological hypotheses.

20.
Cancers (Basel) ; 13(8)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923757

ABSTRACT

Agents targeting the endocannabinoid system (ECS) have gained attention as potential cancer treatments. Given recent evidence that cannabinoid receptor 2 (CB2R) regulates lymphocyte development and inflammation, we performed studies on CB2R in the immune response against melanoma. Analysis of The Cancer Genome Atlas (TCGA) data revealed a strong positive correlation between CB2R expression and survival, as well as B cell infiltration in human melanoma. In a murine melanoma model, CB2R expression reduced the growth of melanoma as well as the B cell frequencies in the tumor microenvironment (TME), compared to CB2R-deficient mice. In depth analysis of tumor-infiltrating B cells using single-cell RNA sequencing suggested a less differentiated phenotype in tumors from Cb2r-/- mice. Thus, in this study, we demonstrate for the first time a protective, B cell-mediated role of CB2R in melanoma. This gained insight might assist in the development of novel, CB2R-targeted cancer therapies.

SELECTION OF CITATIONS
SEARCH DETAIL
...