Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
Biol Methods Protoc ; 9(1): bpae027, 2024.
Article in English | MEDLINE | ID: mdl-38800072

ABSTRACT

Picrosirius red staining constitutes an important and broadly used tool to visualize collagen and fibrosis in various tissues. Although multiple qualitative and quantitative analysis methods to evaluate fibrosis are available, many require specialized devices and software or lack objectivity and scalability. Here, we aimed to develop a versatile and powerful "QuantSeg" macro in the FIJI image processing software capable of automated, robust, and quick collagen quantification in cardiac tissue from light micrographs. To examine different patterns of fibrosis, an optional segmentation algorithm was implemented. To ensure the method's validity, we quantified the collagen content in a set of wild-type versus plakoglobin-knockout murine hearts exhibiting extensive fibrosis using both the macro and an established, fluorescence microscopy-based method, and compared results. To demonstrate the capabilities of the segmentation feature, rat hearts were examined post-myocardial infarction. We found the QuantSeg macro to robustly detect the differences in fibrosis between knockout and control hearts. In sections with low collagen content, the macro yielded more consistent results than using the fluorescence microscopy-based technique. With its wide range of output parameters, ease of use, cost effectiveness, and objectivity, the QuantSeg macro has the potential to become an established method for analysis of PSR-stained tissue. The novel segmentation feature allows for automated evaluation of different patterns of cardiac fibrosis for the first time.

2.
Eur Heart J Cardiovasc Imaging ; 25(2): 213-219, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-37722375

ABSTRACT

AIMS: Myocardial work (MyW) is an echocardiographically derived parameter to estimate myocardial performance. The calculation of MyW utilizes pressure strain loops from global longitudinal strain and brachial blood pressure (BP) as a surrogate of left ventricular systolic pressure (LVSP). Since LVSP cannot be equated with BP in hypertrophic obstructive cardiomyopathy (HOCM), we explored whether LVSP can be derived non-invasively by combining Doppler gradients and BP. METHODS AND RESULTS: We studied 20 consecutive patients (8 women, 12 men; mean age 57.0 ± 13.9 years; NYHA 2.1 ± 0.8; maximal septal thickness 24.7 ± 6.3 mm) with indication for first alcohol septal ablation. All measurements were performed simultaneously in the catheterization laboratory (CathLab)-invasively: ascending aortic and LV pressures; non-invasively: BP, maximal (CWmax) and mean (CWmean) Doppler gradients.LVSP was 188.9 ± 38.5 mmHg. Mean gradients of both methods were comparable (CathLab 34.3 ± 13.4 mmHg vs. CW 31.0 ± 13.7 mmHg). Maximal gradient was higher in echocardiography (64.5 ± 28.8 mmHg) compared with CathLab (54.8 ± 24.0 mmHg; P < 0.05). Adding BP (143.1 ± 20.6 mmHg) to CWmax resulted in higher (207.7 ± 38.0 mmHg; P < 0.001), whereas adding BP to CWmean in lower (174.1 ± 26.1 mmHg; P < 0.01) derived LVSP compared with measured LVSP. However, adding BP to averaged CWmax and CWmean resulted in comparable results for measured and derived LVSP (190.9 ± 31.6 mmHg) yielding a favourable correlation (r = 0.87, P < 0.001) and a good level of agreement in the Bland-Altman plot. CONCLUSION: Non-invasive estimation of LVSP in HOCM is feasible by combining conventional BP and averaged CWmean and CWmax gradients. Hereby, a more reliable estimation of MyW in HOCM may be feasible.


Subject(s)
Cardiomyopathy, Hypertrophic , Male , Humans , Female , Adult , Middle Aged , Aged , Echocardiography/methods , Treatment Outcome
3.
Mol Metab ; 79: 101859, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38142971

ABSTRACT

BACKGROUND: Dilated cardiomyopathy with ataxia (DCMA) is an autosomal recessive disorder arising from truncating mutations in DNAJC19, which encodes an inner mitochondrial membrane protein. Clinical features include an early onset, often life-threatening, cardiomyopathy associated with other metabolic features. Here, we aim to understand the metabolic and pathophysiological mechanisms of mutant DNAJC19 for the development of cardiomyopathy. METHODS: We generated induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) of two affected siblings with DCMA and a gene-edited truncation variant (tv) of DNAJC19 which all lack the conserved DnaJ interaction domain. The mutant iPSC-CMs and their respective control cells were subjected to various analyses, including assessments of morphology, metabolic function, and physiological consequences such as Ca2+ kinetics, contractility, and arrhythmic potential. Validation of respiration analysis was done in a gene-edited HeLa cell line (DNAJC19tvHeLa). RESULTS: Structural analyses revealed mitochondrial fragmentation and abnormal cristae formation associated with an overall reduced mitochondrial protein expression in mutant iPSC-CMs. Morphological alterations were associated with higher oxygen consumption rates (OCRs) in all three mutant iPSC-CMs, indicating higher electron transport chain activity to meet cellular ATP demands. Additionally, increased extracellular acidification rates suggested an increase in overall metabolic flux, while radioactive tracer uptake studies revealed decreased fatty acid uptake and utilization of glucose. Mutant iPSC-CMs also showed increased reactive oxygen species (ROS) and an elevated mitochondrial membrane potential. Increased mitochondrial respiration with pyruvate and malate as substrates was observed in mutant DNAJC19tv HeLa cells in addition to an upregulation of respiratory chain complexes, while cellular ATP-levels remain the same. Moreover, mitochondrial alterations were associated with increased beating frequencies, elevated diastolic Ca2+ concentrations, reduced sarcomere shortening and an increased beat-to-beat rate variability in mutant cell lines in response to ß-adrenergic stimulation. CONCLUSIONS: Loss of the DnaJ domain disturbs cardiac mitochondrial structure with abnormal cristae formation and leads to mitochondrial dysfunction, suggesting that DNAJC19 plays an essential role in mitochondrial morphogenesis and biogenesis. Moreover, increased mitochondrial respiration, altered substrate utilization, increased ROS production and abnormal Ca2+ kinetics provide insights into the pathogenesis of DCMA-related cardiomyopathy.


Subject(s)
Cardiomyopathy, Dilated , Cerebellar Ataxia , Induced Pluripotent Stem Cells , Maleates , Metabolism, Inborn Errors , Humans , Adenosine Triphosphate/metabolism , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Cardiomyopathy, Dilated/pathology , HeLa Cells , Induced Pluripotent Stem Cells/metabolism , Mutation/genetics , Myocytes, Cardiac/metabolism , Reactive Oxygen Species/metabolism , Respiration
4.
Stem Cell Res ; 73: 103240, 2023 12.
Article in English | MEDLINE | ID: mdl-37995437

ABSTRACT

Arrhythmogenic cardiomyopathy (ACM) represents the cardiac phenotype of Naxos disease, an autosomal recessive disease with an additional cutaneous phenotype. ACM is mainly caused by mutated desmosomal proteins, which are part of cardiac adherens junctions and provide mechanical and electrical stability. Here, we generated a knock-out (KO) of the junctional protein Plakoglobin (JUP-KO; JMUi001-A-4) using the CRISPR/Cas9 system in healthy control induced pluripotent stem cells (iPSCs, (JMUi001-A). JUP-KO iPSCs maintained pluripotency, differentiation potential and genomic integrity and provide an in vitro system modelling ACM when differentiated into cardiomyocytes.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Induced Pluripotent Stem Cells , Humans , Induced Pluripotent Stem Cells/metabolism , CRISPR-Cas Systems/genetics , gamma Catenin/genetics , gamma Catenin/metabolism , Arrhythmogenic Right Ventricular Dysplasia/genetics , Myocytes, Cardiac/metabolism , Phenotype
5.
J Cardiovasc Transl Res ; 16(6): 1276-1286, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37418234

ABSTRACT

The presence of multiple pathogenic variants in desmosomal genes (DSC2, DSG2, DSP, JUP, and PKP2) in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC) has been linked to a severe phenotype. However, the pathogenicity of variants is reclassified frequently, which may result in a changed clinical risk prediction. Here, we present the collection, reclassification, and clinical outcome correlation for the largest series of ARVC patients carrying multiple desmosomal pathogenic variants to date (n = 331). After reclassification, only 29% of patients remained carriers of two (likely) pathogenic variants. They reached the composite endpoint (ventricular arrhythmias, heart failure, and death) significantly earlier than patients with one or no remaining reclassified variant (hazard ratios of 1.9 and 1.8, respectively). Periodic reclassification of variants contributes to more accurate risk stratification and subsequent clinical management strategy. Graphical Abstract.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Humans , Arrhythmogenic Right Ventricular Dysplasia/diagnosis , Arrhythmogenic Right Ventricular Dysplasia/genetics , Plakophilins/genetics , Phenotype , Arrhythmias, Cardiac , Mutation
6.
Front Cardiovasc Med ; 10: 1068390, 2023.
Article in English | MEDLINE | ID: mdl-37255709

ABSTRACT

A key step in translational cardiovascular research is the use of large animal models to better understand normal and abnormal physiology, to test drugs or interventions, or to perform studies which would be considered unethical in human subjects. Ultrahigh field magnetic resonance imaging (UHF-MRI) at 7 T field strength is becoming increasingly available for imaging of the heart and, when compared to clinically established field strengths, promises better image quality and image information content, more precise functional analysis, potentially new image contrasts, and as all in-vivo imaging techniques, a reduction of the number of animals per study because of the possibility to scan every animal repeatedly. We present here a solution to the dual use problem of whole-body UHF-MRI systems, which are typically installed in clinical environments, to both UHF-MRI in large animals and humans. Moreover, we provide evidence that in such a research infrastructure UHF-MRI, and ideally combined with a standard small-bore UHF-MRI system, can contribute to a variety of spatial scales in translational cardiovascular research: from cardiac organoids, Zebra fish and rodent hearts to large animal models such as pigs and humans. We present pilot data from serial CINE, late gadolinium enhancement, and susceptibility weighted UHF-MRI in a myocardial infarction model over eight weeks. In 14 pigs which were delivered from a breeding facility in a national SARS-CoV-2 hotspot, we found no infection in the incoming pigs. Human scanning using CINE and phase contrast flow measurements provided good image quality of the left and right ventricle. Agreement of functional analysis between CINE and phase contrast MRI was excellent. MRI in arrested hearts or excised vascular tissue for MRI-based histologic imaging, structural imaging of myofiber and vascular smooth muscle cell architecture using high-resolution diffusion tensor imaging, and UHF-MRI for monitoring free radicals as a surrogate for MRI of reactive oxygen species in studies of oxidative stress are demonstrated. We conclude that UHF-MRI has the potential to become an important precision imaging modality in translational cardiovascular research.

7.
JCI Insight ; 8(6)2023 03 22.
Article in English | MEDLINE | ID: mdl-36795511

ABSTRACT

Arrhythmogenic cardiomyopathy (AC) is a familial heart disease partly caused by impaired desmosome turnover. Thus, stabilization of desmosome integrity may provide new treatment options. Desmosomes, apart from cellular cohesion, provide the structural framework of a signaling hub. Here, we investigated the role of the epidermal growth factor receptor (EGFR) in cardiomyocyte cohesion. We inhibited EGFR under physiological and pathophysiological conditions using the murine plakoglobin-KO AC model, in which EGFR was upregulated. EGFR inhibition enhanced cardiomyocyte cohesion. Immunoprecipitation showed an interaction of EGFR and desmoglein 2 (DSG2). Immunostaining and atomic force microscopy (AFM) revealed enhanced DSG2 localization and binding at cell borders upon EGFR inhibition. Enhanced area composita length and desmosome assembly were observed upon EGFR inhibition, confirmed by enhanced DSG2 and desmoplakin (DP) recruitment to cell borders. PamGene Kinase assay performed in HL-1 cardiomyocytes treated with erlotinib, an EGFR inhibitor, revealed upregulation of Rho-associated protein kinase (ROCK). Erlotinib-mediated desmosome assembly and cardiomyocyte cohesion were abolished upon ROCK inhibition. Thus, inhibiting EGFR and, thereby, stabilizing desmosome integrity via ROCK might provide treatment options for AC.


Subject(s)
Desmosomes , Myocytes, Cardiac , Animals , Mice , Cell Adhesion/physiology , Desmoglein 2/metabolism , Desmosomes/metabolism , ErbB Receptors/metabolism , Erlotinib Hydrochloride/pharmacology , Myocytes, Cardiac/metabolism , rho-Associated Kinases/metabolism
9.
Eur Heart J Cardiovasc Imaging ; 24(6): 710-718, 2023 05 31.
Article in English | MEDLINE | ID: mdl-36841935

ABSTRACT

AIMS: Echocardiographic diagnosis of left ventricular outflow tract obstruction (LVOTO) in hypertrophic cardiomyopathy (HCM) often requires extensive provocative manoeuvers. We investigated, whether echocardiography-derived parameters obtained at rest can aid to determine the presence of LVOTO in persons with HCM. METHODS AND RESULTS: Consecutive patients with HCM admitted to a referral centre underwent standardized transthoracic echocardiographic examination including provocative manoeuvers. Under resting conditions, the length of mitral leaflets and distances between mitral valve coordinates and ventricular walls were blindly measured in parasternal long axis (PLAX) and apical three-chamber (3ch) views, both at early and late systole. Among 142 patients (mean age 59 ± 13 years, 42% women), 68 (42%) had resting or provocable LVOTO with maximal LVOT gradients ≥30 mmHg. Late-systolic distance between mitral leaflet tip and ventricular septum (TIS) was measurable in 137 participants (96%) in 3ch view and independently associated with LVOTO in multivariable logistic regression analysis. The area under the ROC curve of TIS for the identification of LVOTO was 0.91 [95% confidence interval (CI) 0.87-0.96]. TIS ≤ 14 mm yielded 97% sensitivity and 57% specificity regarding LVOTO. TIS >14 mm ruled out LVOTO with a negative predictive value of 95%. TIS ≤9 mm ruled in LVOTO with a positive predictive value of 92% (sensitivity 73%, specificity 95%). Among 43 patients with TIS between 10 and 14 mm, 35% had LVOTO. CONCLUSION: In our study, the novel echocardiographic parameter TIS showed high negative and positive predictive values for LVOTO in HCM. These exploratory results await confirmation in larger collectives and prospective investigations.


Subject(s)
Cardiomyopathy, Hypertrophic , Ventricular Outflow Obstruction, Left , Ventricular Outflow Obstruction , Ventricular Septum , Humans , Female , Middle Aged , Aged , Male , Ventricular Septum/diagnostic imaging , Mitral Valve/diagnostic imaging , Prospective Studies , Echocardiography , Cardiomyopathy, Hypertrophic/complications , Cardiomyopathy, Hypertrophic/diagnostic imaging
10.
Circ Res ; 132(2): e43-e58, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36656972

ABSTRACT

BACKGROUND: Nuclear envelope proteins play an important role in the pathogenesis of hereditary cardiomyopathies. Recently, a new form of arrhythmic cardiomyopathy caused by a homozygous mutation (p.L13R) in the inner nuclear membrane protein LEMD2 was discovered. The aim was to unravel the molecular mechanisms of mutant LEMD2 in the pathogenesis of cardiomyopathy. METHODS: We generated a Lemd2 p.L13R knock-in mouse model and a corresponding cell model via CRISPR/Cas9 technology and investigated the cardiac phenotype as well as cellular and subcellular mechanisms of nuclear membrane rupture and repair. RESULTS: Knock-in mice developed a cardiomyopathy with predominantly endocardial fibrosis, left ventricular dilatation, and systolic dysfunction. Electrocardiograms displayed pronounced ventricular arrhythmias and conduction disease. A key finding of knock-in cardiomyocytes on ultrastructural level was a significant increase in nuclear membrane invaginations and decreased nuclear circularity. Furthermore, increased DNA damage and premature senescence were detected as the underlying cause of fibrotic and inflammatory remodeling. As the p.L13R mutation is located in the Lap2/Emerin/Man1 (LEM)-domain, we observed a disrupted interaction between mutant LEMD2 and BAF (barrier-to-autointegration factor), which is required to initiate the nuclear envelope rupture repair process. To mimic increased mechanical stress with subsequent nuclear envelope ruptures, we investigated mutant HeLa-cells upon electrical stimulation and increased stiffness. Here, we demonstrated impaired nuclear envelope rupture repair capacity, subsequent cytoplasmic leakage of the DNA repair factor KU80 along with increased DNA damage, and recruitment of the cGAS (cyclic GMP-AMP synthase) to the nuclear membrane and micronuclei. CONCLUSIONS: We show for the first time that the Lemd2 p.L13R mutation in mice recapitulates human dilated cardiomyopathy with fibrosis and severe ventricular arrhythmias. Impaired nuclear envelope rupture repair capacity resulted in increased DNA damage and activation of the cGAS/STING/IFN pathway, promoting premature senescence. Hence, LEMD2 is a new player inthe disease group of laminopathies.


Subject(s)
Cardiomyopathy, Dilated , Membrane Proteins , Nuclear Proteins , Animals , Humans , Mice , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Fibrosis , Membrane Proteins/genetics , Mutation , Nuclear Envelope/metabolism , Nuclear Proteins/genetics
11.
J Cell Sci ; 136(1)2023 01 01.
Article in English | MEDLINE | ID: mdl-36594662

ABSTRACT

Desmosome diseases are caused by dysfunction of desmosomes, which anchor intermediate filaments (IFs) at sites of cell-cell adhesion. For many decades, the focus of attention has been on the role of actin filament-associated adherens junctions in development and disease, especially cancer. However, interference with the function of desmosomes, their molecular constituents or their attachments to IFs has now emerged as a major contributor to a variety of diseases affecting different tissues and organs including skin, heart and the digestive tract. The first Alpine desmosome disease meeting (ADDM) held in Grainau, Germany, in October 2022 brought together international researchers from the basic sciences with clinical experts from diverse fields to share and discuss their ideas and concepts on desmosome function and dysfunction in the different cell types involved in desmosome diseases. Besides the prototypic desmosomal diseases pemphigus and arrhythmogenic cardiomyopathy, the role of desmosome dysfunction in inflammatory bowel diseases and eosinophilic esophagitis was discussed.


Subject(s)
Desmosomes , Disease , Humans , Cell Adhesion , Desmosomes/physiology , Pemphigus
12.
Tissue Barriers ; 11(4): 2138061, 2023 10 02.
Article in English | MEDLINE | ID: mdl-36280901

ABSTRACT

Previous data provided evidence for a critical role of desmosomes to stabilize intestinal epithelial barrier (IEB) function. These studies suggest that desmosomes not only contribute to intercellular adhesion but also play a role as signaling hubs. The contribution of desmosomal plaque proteins plakophilins (PKP) in the intestinal epithelium remains unexplored. The intestinal expression of PKP2 and PKP3 was verified in human gut specimens, human intestinal organoids as well as in Caco2 cells whereas PKP1 was not detected. Knock-down of PKP2 using siRNA in Caco2 cells resulted in loss of intercellular adhesion and attenuated epithelial barrier. This was paralleled by changes of the whole desmosomal complex, including loss of desmoglein2, desmocollin2, plakoglobin and desmoplakin. In addition, tight junction proteins claudin1 and claudin4 were reduced following the loss of PKP2. Interestingly, siRNA-induced loss of PKP3 did not change intercellular adhesion and barrier function in Caco2 cells, while siRNA-induced loss of both PKP2 and PKP3 augmented the changes observed for reduced PKP2 alone. Moreover, loss of PKP2 and PKP2/3, but not PKP3, resulted in reduced activity levels of protein kinase C (PKC). Restoration of PKC activity using Phorbol 12-myristate 13-acetate (PMA) rescued loss of intestinal barrier function and attenuated the reduced expression patterns of claudin1 and claudin4. Immunostaining, proximity ligation assays and co-immunoprecipitation revealed a direct interaction between PKP2 and PKC. In summary, our in vitro data suggest that PKP2 plays a critical role for intestinal barrier function by providing a signaling hub for PKC-mediated expression of tight junction proteins claudin1 and claudin4.


Subject(s)
Desmosomes , Plakophilins , Humans , Caco-2 Cells , Cell Adhesion Molecules/metabolism , Claudin-4/metabolism , Desmosomes/metabolism , Plakophilins/genetics , Plakophilins/metabolism , Protein Kinase C/metabolism , RNA, Small Interfering/metabolism
13.
Int J Mol Sci ; 23(17)2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36076925

ABSTRACT

Arrhythmogenic cardiomyopathy (ACM) is an inherited heart muscle disease caused by heterozygous missense mutations within the gene encoding for the nuclear envelope protein transmembrane protein 43 (TMEM43). The disease is characterized by myocyte loss and fibro-fatty replacement, leading to life-threatening ventricular arrhythmias and sudden cardiac death. However, the role of TMEM43 in the pathogenesis of ACM remains poorly understood. In this study, we generated cardiomyocyte-restricted transgenic zebrafish lines that overexpress eGFP-linked full-length human wild-type (WT) TMEM43 and two genetic variants (c.1073C>T, p.S358L; c.332C>T, p.P111L) using the Tol2-system. Overexpression of WT and p.P111L-mutant TMEM43 was associated with transcriptional activation of the mTOR pathway and ribosome biogenesis, and resulted in enlarged hearts with cardiomyocyte hypertrophy. Intriguingly, mutant p.S358L TMEM43 was found to be unstable and partially redistributed into the cytoplasm in embryonic and adult hearts. Moreover, both TMEM43 variants displayed cardiac morphological defects at juvenile stages and ultrastructural changes within the myocardium, accompanied by dysregulated gene expression profiles in adulthood. Finally, CRISPR/Cas9 mutants demonstrated an age-dependent cardiac phenotype characterized by heart enlargement in adulthood. In conclusion, our findings suggest ultrastructural remodeling and transcriptomic alterations underlying the development of structural and functional cardiac defects in TMEM43-associated cardiomyopathy.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Membrane Proteins , Myocardium , Adult , Animals , Arrhythmogenic Right Ventricular Dysplasia/genetics , Heterozygote , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mutation, Missense , Myocardium/metabolism , Myocardium/pathology , Zebrafish/genetics
14.
J Clin Med ; 11(8)2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35456187

ABSTRACT

Restrictive cardiomyopathy is a rare cardiac disease causing severe diastolic dysfunction, ventricular stiffness and dilated atria. In consequence, it induces heart failure often with preserved ejection fraction and is associated with a high mortality. Since it is a poor clinical prognosis, patients with restrictive cardiomyopathy frequently require heart transplantation. Genetic as well as non-genetic factors contribute to restrictive cardiomyopathy and a significant portion of cases are of unknown etiology. However, the genetic forms of restrictive cardiomyopathy and the involved molecular pathomechanisms are only partially understood. In this review, we summarize the current knowledge about primary genetic restrictive cardiomyopathy and describe its genetic landscape, which might be of interest for geneticists as well as for cardiologists.

15.
Cardiovasc Res ; 118(1): 37-52, 2022 01 07.
Article in English | MEDLINE | ID: mdl-33537710

ABSTRACT

The interplay between the cardiovascular system, metabolism, and inflammation plays a central role in the pathophysiology of a wide spectrum of cardiovascular diseases, including heart failure. Here, we provide an overview of the fundamental aspects of the interrelation between inflammation and metabolism, ranging from the role of metabolism in immune cell function to the processes how inflammation modulates systemic and cardiac metabolism. Furthermore, we discuss how disruption of this immuno-metabolic interface is involved in the development and progression of cardiovascular disease, with a special focus on heart failure. Finally, we present new technologies and therapeutic approaches that have recently emerged and hold promise for the future of cardiovascular medicine.


Subject(s)
Energy Metabolism , Heart Failure/metabolism , Heart/physiopathology , Immune System/metabolism , Inflammation/metabolism , Myocardium/metabolism , Animals , Anti-Inflammatory Agents/therapeutic use , Energy Metabolism/drug effects , Heart/drug effects , Heart Failure/drug therapy , Heart Failure/immunology , Heart Failure/physiopathology , Humans , Immune System/drug effects , Immune System/immunology , Immune System/physiopathology , Inflammation/drug therapy , Inflammation/immunology , Inflammation/physiopathology , Inflammation Mediators , Myocardium/immunology , Signal Transduction
16.
Curr Heart Fail Rep ; 18(6): 378-390, 2021 12.
Article in English | MEDLINE | ID: mdl-34478111

ABSTRACT

PURPOSE OF REVIEW: Arrhythmogenic cardiomyopathy (ACM) is a genetic disease characterized by life-threatening ventricular arrhythmias and sudden cardiac death (SCD) in apparently healthy young adults. Mutations in genes encoding for cellular junctions can be found in about half of the patients. However, disease onset and severity, risk of arrhythmias, and outcome are highly variable and drug-targeted treatment is currently unavailable. RECENT FINDINGS: This review focuses on advances in clinical risk stratification, genetic etiology, and pathophysiological concepts. The desmosome is the central part of the disease, but other intercalated disc and associated structural proteins not only broaden the genetic spectrum but also provide novel molecular and cellular insights into the pathogenesis of ACM. Signaling pathways and the role of inflammation will be discussed and targets for novel therapeutic approaches outlined. Genetic discoveries and experimental-driven preclinical research contributed significantly to the understanding of ACM towards mutation- and pathway-specific personalized medicine.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Heart Failure , Arrhythmias, Cardiac/genetics , Arrhythmogenic Right Ventricular Dysplasia/genetics , Death, Sudden, Cardiac/etiology , Humans , Mutation
17.
Auton Neurosci ; 235: 102871, 2021 11.
Article in English | MEDLINE | ID: mdl-34474354

ABSTRACT

Vasovagal syncope may have a genetic predisposition. It has a high prevalence in some families, and children of a fainting parent are more likely to faint than those without a parent who faints. Having two fainting parents or a fainting twin increases the likelihood even further. Several genotypes appear to associate with the phenotype of positive tilt tests, but the control subjects are usually those who faint and have negative tilt tests. Twin studies, highly focused genome-wide association studies, and copy number variation studies all suggest there are loci in the genome that associate with vasovagal syncope, although the specific genes, pathways, and proteins are unknown. A recent multigenerational kindred candidate gene study identified 3 genes that associate with vasovagal syncope. The best evidence to date is for central signaling genes involving serotonin and dopamine. Genome-wide association studies to date have not yet been helpful. Our understanding of the genetic correlates of vasovagal syncope leaves ample opportunity for future work.


Subject(s)
Syncope, Vasovagal , DNA Copy Number Variations , Genetic Markers , Genome-Wide Association Study , Humans , Syncope, Vasovagal/genetics , Tilt-Table Test
18.
Int J Mol Sci ; 22(15)2021 Jul 23.
Article in English | MEDLINE | ID: mdl-34360639

ABSTRACT

LMNA-related dilated cardiomyopathy is an inherited heart disease caused by mutations in the LMNA gene encoding for lamin A/C. The disease is characterized by left ventricular enlargement and impaired systolic function associated with conduction defects and ventricular arrhythmias. We hypothesized that LMNA-mutated patients' induced Pluripotent Stem Cell-derived cardiomyocytes (iPSC-CMs) display electrophysiological abnormalities, thus constituting a suitable tool for deciphering the arrhythmogenic mechanisms of the disease, and possibly for developing novel therapeutic modalities. iPSC-CMs were generated from two related patients (father and son) carrying the same E342K mutation in the LMNA gene. Compared to control iPSC-CMs, LMNA-mutated iPSC-CMs exhibited the following electrophysiological abnormalities: (1) decreased spontaneous action potential beat rate and decreased pacemaker current (If) density; (2) prolonged action potential duration and increased L-type Ca2+ current (ICa,L) density; (3) delayed afterdepolarizations (DADs), arrhythmias and increased beat rate variability; (4) DADs, arrhythmias and cessation of spontaneous firing in response to ß-adrenergic stimulation and rapid pacing. Additionally, compared to healthy control, LMNA-mutated iPSC-CMs displayed nuclear morphological irregularities and gene expression alterations. Notably, KB-R7943, a selective inhibitor of the reverse-mode of the Na+/Ca2+ exchanger, blocked the DADs in LMNA-mutated iPSC-CMs. Our findings demonstrate cellular electrophysiological mechanisms underlying the arrhythmias in LMNA-related dilated cardiomyopathy.


Subject(s)
Arrhythmias, Cardiac/pathology , Calcium/metabolism , Cardiomyopathy, Dilated/pathology , Induced Pluripotent Stem Cells/pathology , Lamin Type A/genetics , Mutation , Myocytes, Cardiac/pathology , Action Potentials , Adult , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/metabolism , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/metabolism , Cell Differentiation , Electrophysiological Phenomena , Female , Humans , Induced Pluripotent Stem Cells/metabolism , Male , Middle Aged , Myocytes, Cardiac/metabolism , Pedigree
19.
Genes (Basel) ; 12(4)2021 03 26.
Article in English | MEDLINE | ID: mdl-33810227

ABSTRACT

Since the beginnings of cardiovascular genetics, it became evident in thousands of clinical cases that many cardiomyopathies, channelopathies, aortopathies as well as complex multifactorial diseases such as coronary artery disease, atherosclerosis or atrial fibrillation (AF) have a genetic etiology [...].


Subject(s)
Cardiovascular Diseases/genetics , Genetic Predisposition to Disease/genetics , Genetic Variation , Genetic Association Studies , Humans , Mutation , Periodicals as Topic , Polymorphism, Single Nucleotide
20.
Int J Mol Sci ; 22(7)2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33917638

ABSTRACT

About 50% of patients with arrhythmogenic cardiomyopathy (ACM) carry a pathogenic or likely pathogenic mutation in the desmosomal genes. However, there is a significant number of patients without positive familial anamnesis. Therefore, the molecular reasons for ACM in these patients are frequently unknown and a genetic contribution might be underestimated. Here, we used a next-generation sequencing (NGS) approach and in addition single nucleotide polymor-phism (SNP) arrays for the genetic analysis of two independent index patients without familial medical history. Of note, this genetic strategy revealed a homozygous splice site mutation (DSG2-c.378+1G>T) in the first patient and a nonsense mutation (DSG2-p.L772X) in combination with a large deletion in DSG2 in the second one. In conclusion, a recessive inheritance pattern is likely for both cases, which might contribute to the hidden medical history in both families. This is the first report about these novel loss-of-function mutations in DSG2 that have not been previously identi-fied. Therefore, we suggest performing deep genetic analyses using NGS in combination with SNP arrays also for ACM index patients without obvious familial medical history. In the future, this finding might has relevance for the genetic counseling of similar cases.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia/genetics , Desmoglein 2/genetics , Hemizygote , Homozygote , Loss of Function Mutation , Polymorphism, Single Nucleotide , Arrhythmogenic Right Ventricular Dysplasia/diagnostic imaging , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...