Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
2.
Front Immunol ; 14: 1030395, 2023.
Article in English | MEDLINE | ID: mdl-37283756

ABSTRACT

Healthy host-microbial mutualism with our intestinal microbiota relies to a large degree on compartmentalization and careful regulation of adaptive mucosal and systemic anti-microbial immune responses. However, commensal intestinal bacteria are never exclusively or permanently restricted to the intestinal lumen and regularly reach the systemic circulation. This results in various degrees of commensal bacteremia that needs to be appropriately dealt with by the systemic immune system. While most intestinal commensal bacteria, except for pathobionts or opportunistic pathogen, have evolved to be non-pathogenic, this does not mean that they are non-immunogenic. Mucosal immune adaptation is carefully controlled and regulated to avoid an inflammatory response, but the systemic immune system usually responds differently and more vigorously to systemic bacteremia. Here we show that germ-free mice have increased systemic immune sensitivity and display anti-commensal hyperreactivity in response to the addition of a single defined T helper cell epitope to the outer membrane porin C (OmpC) of a commensal Escherichia coli strain demonstrated by increased E. coli-specific T cell-dependent IgG responses following systemic priming. This increased systemic immune sensitivity was not observed in mice colonized with a defined microbiota at birth indicating that intestinal commensal colonization also regulates systemic, and not only mucosal, anti-commensal responses. The observed increased immunogenicity of the E. coli strain with the modified OmpC protein was not due to a loss of function and associated metabolic changes as a control E. coli strain without OmpC did not display increased immunogenicity.


Subject(s)
Bacteremia , Escherichia coli , Animals , Mice , Intestinal Mucosa , Symbiosis , Intestines , Bacteremia/pathology
3.
Cell Rep ; 42(5): 112507, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37195866

ABSTRACT

During bloodstream infections, neutrophils home to the liver as part of an intravascular immune response to eradicate blood-borne pathogens, but the mechanisms regulating this crucial response are unknown. Using in vivo imaging of neutrophil trafficking in germ-free and gnotobiotic mice, we demonstrate that the intestinal microbiota guides neutrophil homing to the liver in response to infection mediated by the microbial metabolite D-lactate. Commensal-derived D-lactate augments neutrophil adhesion in the liver independent of granulopoiesis in bone marrow or neutrophil maturation and activation in blood. Instead, gut-to-liver D-lactate signaling primes liver endothelial cells to upregulate adhesion molecule expression in response to infection and promote neutrophil adherence. Targeted correction of microbiota D-lactate production in a model of antibiotic-induced dysbiosis restores neutrophil homing to the liver and reduces bacteremia in a model of Staphylococcus aureus infection. These findings reveal long-distance traffic control of neutrophil recruitment to the liver by microbiota-endothelium crosstalk.


Subject(s)
Endothelial Cells , Microbiota , Animals , Mice , Neutrophil Infiltration , Neutrophils/metabolism , Liver/metabolism , Endothelium , Lactates/metabolism
4.
Immunity ; 55(7): 1250-1267.e12, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35709757

ABSTRACT

The intestine harbors a large population of resident eosinophils, yet the function of intestinal eosinophils has not been explored. Flow cytometry and whole-mount imaging identified eosinophils residing in the lamina propria along the length of the intestine prior to postnatal microbial colonization. Microscopy, transcriptomic analysis, and mass spectrometry of intestinal tissue revealed villus blunting, altered extracellular matrix, decreased epithelial cell turnover, increased gastrointestinal motility, and decreased lipid absorption in eosinophil-deficient mice. Mechanistically, intestinal epithelial cells released IL-33 in a microbiota-dependent manner, which led to eosinophil activation. The colonization of germ-free mice demonstrated that eosinophil activation in response to microbes regulated villous size alterations, macrophage maturation, epithelial barrier integrity, and intestinal transit. Collectively, our findings demonstrate a critical role for eosinophils in facilitating the mutualistic interactions between the host and microbiota and provide a rationale for the functional significance of their early life recruitment in the small intestine.


Subject(s)
Communicable Diseases , Microbiota , Animals , Eosinophils , Homeostasis , Intestinal Mucosa , Intestine, Small , Mice
5.
Mucosal Immunol ; 15(5): 809-818, 2022 05.
Article in English | MEDLINE | ID: mdl-35732817

ABSTRACT

Despite compartmentalization within the lumen of the gastrointestinal tract, the gut microbiota has a far-reaching influence on immune cell development and function throughout the body. This long-distance relationship is crucial for immune homeostasis, including effective host defense against invading pathogens that cause systemic infections. Herein, we review new insights into how commensal microbes that are spatially restricted to the gut lumen can engage in long-distance relationships with innate and adaptive immune cells at systemic sites to fortify host defenses against infections. In addition, we explore the consequences of intestinal dysbiosis on impaired host defense and immune-mediated pathology during infections, including emerging evidence linking dysbiosis with aberrant systemic inflammation and immune-mediated organ damage in sepsis. As such, therapeutic modification of the gut microbiota is an emerging target for interventions to prevent and/or treat systemic infections and sepsis by harnessing the long-distance relationships between gut microbes and systemic immunity.


Subject(s)
Gastrointestinal Microbiome , Sepsis , Dysbiosis , Gastrointestinal Tract , Humans , Symbiosis
6.
Cell Mol Life Sci ; 79(4): 221, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35377005

ABSTRACT

The intestinal microbiota is critical for the development of gut-associated lymphoid tissues, including Peyer's patches and mesenteric lymph nodes, and is instrumental in educating the local as well as systemic immune system. In addition, it also impacts the development and function of peripheral organs, such as liver, lung, and the brain, in health and disease. However, whether and how the intestinal microbiota has an impact on T cell ontogeny in the hymus remains largely unclear. Recently, the impact of molecules and metabolites derived from the intestinal microbiota on T cell ontogeny in the thymus has been investigated in more detail. In this review, we will discuss the recent findings in the emerging field of the gut-thymus axis and we will highlight the current questions and challenges in the field.


Subject(s)
Gastrointestinal Microbiome , Immunity, Mucosal , Intestinal Mucosa , Liver , T-Lymphocytes
7.
Cell ; 184(21): 5301-5303, 2021 10 14.
Article in English | MEDLINE | ID: mdl-34624223

ABSTRACT

The gut microbiota has been shown to promote the efficacy of cancer therapy through regulating adaptive immune responses. In this issue of Cell, Lam et al. provide new evidence demonstrating that specific gut bacteria also reprogram the innate immune tumor microenvironment to enhance the efficacy of cancer therapies.


Subject(s)
Microbiota , Neoplasms , Humans , Immunity , Monocytes , Neoplasms/therapy , Tumor Microenvironment
8.
Oncoimmunology ; 10(1): 1945202, 2021.
Article in English | MEDLINE | ID: mdl-34367729

ABSTRACT

Squamous cell carcinoma of the tonsil is one of the most frequent cancers of the oropharynx. The escalating rate of tonsil cancer during the last decades is associated with the increase of high risk-human papilloma virus (HR-HPV) infections. While the microbiome in oropharyngeal malignant diseases has been characterized to some extent, the microbial colonization of HR-HPV-associated tonsil cancer remains largely unknown. Using 16S rRNA gene amplicon sequencing, we have characterized the microbiome of human palatine tonsil crypts in patients suffering from HR-HPV-associated tonsil cancer in comparison to a control cohort of adult sleep apnea patients. We found an increased abundance of the phyla Firmicutes and Actinobacteria in tumor patients, whereas the abundance of Spirochetes and Synergistetes was significantly higher in the control cohort. Furthermore, the accumulation of several genera such as Veillonella, Streptococcus and Prevotella_7 in tonsillar crypts was associated with tonsil cancer. In contrast, Fusobacterium, Prevotella and Treponema_2 were enriched in sleep apnea patients. Machine learning-based bacterial species analysis indicated that a particular bacterial composition in tonsillar crypts is tumor-predictive. Species-specific PCR-based validation in extended patient cohorts confirmed that differential abundance of Filifactor alocis and Prevotella melaninogenica is a distinct trait of tonsil cancer. This study shows that tonsil cancer patients harbor a characteristic microbiome in the crypt environment that differs from the microbiome of sleep apnea patients on all phylogenetic levels. Moreover, our analysis indicates that profiling of microbial communities in distinct tonsillar niches provides microbiome-based avenues for the diagnosis of tonsil cancer.


Subject(s)
Carcinoma, Squamous Cell , Microbiota , Tonsillar Neoplasms , Clostridiales , Humans , Microbiota/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics
9.
Science ; 369(6510): 1481-1489, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32792462

ABSTRACT

Several species of intestinal bacteria have been associated with enhanced efficacy of checkpoint blockade immunotherapy, but the underlying mechanisms by which the microbiome enhances antitumor immunity are unclear. In this study, we isolated three bacterial species-Bifidobacterium pseudolongum, Lactobacillus johnsonii, and Olsenella species-that significantly enhanced efficacy of immune checkpoint inhibitors in four mouse models of cancer. We found that intestinal B. pseudolongum modulated enhanced immunotherapy response through production of the metabolite inosine. Decreased gut barrier function induced by immunotherapy increased systemic translocation of inosine and activated antitumor T cells. The effect of inosine was dependent on T cell expression of the adenosine A2A receptor and required costimulation. Collectively, our study identifies a previously unknown microbial metabolite immune pathway activated by immunotherapy that may be exploited to develop microbial-based adjuvant therapies.


Subject(s)
Bifidobacterium/metabolism , Gastrointestinal Microbiome , Immunotherapy , Inosine/metabolism , Intestinal Neoplasms/therapy , Lactobacillus johnsonii/metabolism , Melanoma/therapy , Skin Neoplasms/therapy , Urinary Bladder Neoplasms/therapy , Animals , Antibodies/therapeutic use , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , CTLA-4 Antigen/antagonists & inhibitors , CTLA-4 Antigen/immunology , Female , Male , Mice , Mice, Inbred C57BL , Neoplasms, Experimental/therapy , Receptor, Adenosine A2A/metabolism , T-Lymphocytes/immunology
10.
Mucosal Immunol ; 13(6): 855-866, 2020 11.
Article in English | MEDLINE | ID: mdl-32792666

ABSTRACT

Induction of intestinal T helper cell subsets by commensal members of the intestinal microbiota is an important component of the many immune adaptations required to establish host-microbial homeostasis. Importantly, altered intestinal T helper cell profiles can have pathological consequences that are not limited to intestinal sites. Therefore, microbial-mediated modulation of the intestinal T helper cell profile could have strong therapeutic potentials. However, in order to develop microbial therapies that specifically induce the desired alterations in the intestinal T helper cell compartment one has to first gain a detailed understanding of how microbial composition and the metabolites derived or induced by the microbiota impact on intestinal T helper cell responses. Here we summarize the milestone findings in the field of microbiota-intestinal T helper cell crosstalk with a focus on the role of specific commensal bacteria and their metabolites. We discuss mechanistic mouse studies and are linking these to human studies where possible. Moreover, we highlight recent advances in the field of microbial CD4 T cell epitope mimicry in autoimmune diseases and the role of microbially-induced CD4 T cells in cancer immune checkpoint blockade therapy.


Subject(s)
Autoimmune Diseases/immunology , Gastrointestinal Microbiome/immunology , Immune Checkpoint Inhibitors/therapeutic use , Intestinal Mucosa/immunology , Intestines/immunology , Neoplasms/immunology , T-Lymphocytes, Helper-Inducer/immunology , Animals , Epitopes/immunology , Homeostasis , Humans , Mice , Molecular Mimicry , Neoplasms/therapy
11.
Cell Host Microbe ; 28(5): 660-668.e4, 2020 11 11.
Article in English | MEDLINE | ID: mdl-32810440

ABSTRACT

Eradication of pathogens from the bloodstream is critical to prevent disseminated infections and sepsis. Kupffer cells in the liver form an intravascular firewall that captures and clears pathogens from the blood. Here, we show that the catching and killing of circulating pathogens by Kupffer cells in vivo are promoted by the gut microbiota through commensal-derived D-lactate that reaches the liver via the portal vein. The integrity of this Kupffer cell-mediated intravascular firewall requires continuous crosstalk with gut commensals, as microbiota depletion with antibiotics leads to a failure of pathogen clearance and overwhelming disseminated infection. Furthermore, administration of purified D-lactate to germ-free mice, or gnotobiotic colonization with D-lactate-producing commensals, restores Kupffer cell-mediated pathogen clearance by the liver firewall. Thus, the gut microbiota programs an intravascular immune firewall that protects against the spread of bacterial infections via the bloodstream.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Infections/drug therapy , Gastrointestinal Microbiome/immunology , Protective Agents/pharmacology , Animals , Bacteria , Bacterial Infections/microbiology , Dysbiosis , Germ-Free Life , Kupffer Cells , Lactobacillus , Liver/microbiology , Mice , Mice, Inbred C57BL , Sepsis , Staphylococcus aureus , Symbiosis
12.
Cell Mol Gastroenterol Hepatol ; 10(2): 225-244, 2020.
Article in English | MEDLINE | ID: mdl-32289500

ABSTRACT

BACKGROUND & AIMS: Despite achieving endoscopic remission, more than 20% of inflammatory bowel disease patients experience chronic abdominal pain. These patients have increased rectal transient receptor potential vanilloid-1 receptor (TRPV1) expression, a key transducer of inflammatory pain. Because inflammatory bowel disease patients in remission exhibit dysbiosis and microbial manipulation alters TRPV1 function, our goal was to examine whether microbial perturbation modulated transient receptor potential function in a mouse model. METHODS: Mice were given dextran sodium sulfate (DSS) to induce colitis and were allowed to recover. The microbiome was perturbed by using antibiotics as well as fecal microbial transplant (FMT). Visceral and somatic sensitivity were assessed by recording visceromotor responses to colorectal distention and using hot plate/automated Von Frey tests, respectively. Calcium imaging of isolated dorsal root ganglia neurons was used as an in vitro correlate of nociception. The microbiome composition was evaluated via 16S rRNA gene variable region V4 amplicon sequencing, whereas fecal short-chain fatty acids (SCFAs) were assessed by using targeted mass spectrometry. RESULTS: Postinflammatory DSS mice developed visceral and somatic hyperalgesia. Antibiotic administration during DSS recovery induced visceral, but not somatic, hyperalgesia independent of inflammation. FMT of postinflammatory DSS stool into antibiotic-treated mice increased visceral hypersensitivity, whereas FMT of control stool reversed antibiotics' sensitizing effects. Postinflammatory mice exhibited both increased SCFA-producing species and fecal acetate/butyrate content compared with controls. Capsaicin-evoked calcium responses were increased in naive dorsal root ganglion neurons incubated with both sodium butyrate/propionate alone and with colonic supernatants derived from postinflammatory mice. CONCLUSIONS: The microbiome plays a central role in postinflammatory visceral hypersensitivity. Microbial-derived SCFAs can sensitize nociceptive neurons and may contribute to the pathogenesis of postinflammatory visceral pain.


Subject(s)
Colitis, Ulcerative/complications , Dysbiosis/immunology , Gastrointestinal Microbiome/immunology , Visceral Pain/immunology , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/immunology , Colitis, Ulcerative/microbiology , Colon/drug effects , Colon/immunology , Colon/microbiology , Colon/pathology , Dextran Sulfate/administration & dosage , Dextran Sulfate/toxicity , Disease Models, Animal , Dysbiosis/microbiology , Fatty Acids, Volatile/analysis , Fatty Acids, Volatile/metabolism , Feces/chemistry , Feces/microbiology , Humans , Intestinal Mucosa/drug effects , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Male , Mice , Nociception , Nociceptors/immunology , Nociceptors/metabolism , TRPV Cation Channels/metabolism , Visceral Pain/microbiology
13.
Science ; 366(6467): 881-886, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31727837

ABSTRACT

Myocarditis can develop into inflammatory cardiomyopathy through chronic stimulation of myosin heavy chain 6-specific T helper (TH)1 and TH17 cells. However, mechanisms governing the cardiotoxicity programming of heart-specific T cells have remained elusive. Using a mouse model of spontaneous autoimmune myocarditis, we show that progression of myocarditis to lethal heart disease depends on cardiac myosin-specific TH17 cells imprinted in the intestine by a commensal Bacteroides species peptide mimic. Both the successful prevention of lethal disease in mice by antibiotic therapy and the significantly elevated Bacteroides-specific CD4+ T cell and B cell responses observed in human myocarditis patients suggest that mimic peptides from commensal bacteria can promote inflammatory cardiomyopathy in genetically susceptible individuals. The ability to restrain cardiotoxic T cells through manipulation of the microbiome thereby transforms inflammatory cardiomyopathy into a targetable disease.


Subject(s)
Autoimmune Diseases/complications , Bacteroides/immunology , Cardiomyopathy, Dilated/immunology , Cardiomyopathy, Dilated/microbiology , Gastrointestinal Microbiome/immunology , Myocarditis/complications , Peptides/immunology , beta-Galactosidase/immunology , Animals , Autoimmune Diseases/immunology , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Disease Models, Animal , Humans , Intestines/microbiology , Mice , Mice, Inbred BALB C , Mice, Transgenic , Myocarditis/immunology , Myosin Heavy Chains/genetics , Myosin Heavy Chains/immunology , Th17 Cells/immunology
14.
Immunol Cell Biol ; 97(7): 625-635, 2019 08.
Article in English | MEDLINE | ID: mdl-31127637

ABSTRACT

The microbiota plays an important role in regulating both the innate and adaptive immune systems. Many studies have focused on the ability of microbes to shape the immune system by stimulating B-cell and antibody responses and the differentiation of T helper cell function. However, an important feature of the immune system is its ability to generate memory responses, which provide increased survival for the host. This review will highlight the role of the microbiota in the induction of immune memory with a focus on both adaptive and innate memory as well as vaccine efficacy.


Subject(s)
Immunity , Immunologic Memory , Immunomodulation , Microbiota/immunology , Animals , Antibodies/immunology , Antibody Formation/immunology , Gastrointestinal Microbiome/immunology , Humans , Immunity, Innate , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Vaccines/immunology
15.
FASEB J ; 33(4): 5676-5689, 2019 04.
Article in English | MEDLINE | ID: mdl-30668930

ABSTRACT

Macrophages play central roles in immunity as early effectors and modulating adaptive immune reponses; we implicated macrophages in the anticolitic effect of infection with the tapeworm Hymenolepis diminuta. Here, gene arrays revealed that H. diminuta antigen (HdAg) evoked a program in murine macrophages distinct from that elicited by IL-4. Further, HdAg suppressed LPS-evoked release of TNF-α and IL-1ß from macrophages via autocrine IL-10 signaling. In assessing the ability of macrophages treated in vitro with an extract of H. diminuta [M(HdAg)] to affect disease, intravenous, but not peritoneal, injection of M(HdAg) protected wild-type but not RAG1-/- mice from dinitrobenzene sulphonic acid (DNBS)-induced colitis. Administration of splenic CD4+ T cells from in vitro cocultures with M(HdAg), but not those cocultured with M(IL-4) cells, inhibited DNBS-induced colitis; fractionation of the T-cell population indicated that the CD4+CD25+ T cells from cocultures with M(HdAg) drove the suppression of DNBS-induced colitis. Use of IL-4-/- or IL-10-/- CD4+ T cells revealed that neither cytokine alone from the donor cells was essential for the anticolitic effect. These data illustrate that HdAg evokes a unique regulatory program in macrophages, identifies HdAg-evoked IL-10 suppression of macrophage activation, and reveals the ability of HdAg-treated macrophages to educate ( i.e., condition) and mobilize CD4+CD25+ T cells, which could be deployed to treat colonic inflammation.-Reyes, J. L., Lopes, F., Leung, G., Jayme, T. S., Matisz, C. E., Shute, A., Burkhard, R., Carneiro, M., Workentine, M. L., Wang, A., Petri, B., Beck, P. L., Geuking, M. B., McKay, D. M., Macrophages treated with antigen from the tapeworm Hymenolepis diminuta condition CD25+ T cells to suppress colitis.


Subject(s)
Antigens, Helminth/immunology , CD4-Positive T-Lymphocytes/immunology , Cestoda/immunology , Colitis/immunology , Hymenolepis diminuta/immunology , Interleukin-2 Receptor alpha Subunit/immunology , Macrophages/immunology , Animals , Colitis/parasitology , Colon/immunology , Colon/parasitology , Cytokines/immunology , Humans , Interleukin-10/immunology , Interleukin-4/immunology , Macrophage Activation/immunology , Macrophages/parasitology , Male , Mice , Mice, Inbred BALB C
16.
Front Immunol ; 10: 3107, 2019.
Article in English | MEDLINE | ID: mdl-32010146

ABSTRACT

Early life exposure to microbes plays an important role in immune system development. Germ-free mice, or mice colonized with a low-diversity microbiota, exhibit high serum IgE levels. An increase in microbial richness, providing it occurs in a critical developmental window early in life, leads to inhibition of this hygiene-induced IgE. However, whether this inhibition is dependent solely on certain microbial species, or is an additive effect of microbial richness, remains to be determined. Here we report that mice colonized with a combination of bacterial species with specific characteristics is required to inhibit IgE levels. These defined characteristics include the presence in early life, acetate production and immunogenicity reflected by induction of IgA. Suppression of IgE did not correlate with production of the short chain fatty acids propionate and butyrate, or induction of peripherally induced Tregs in mucosal tissues. Thus, inhibition of IgE induction can be mediated by specific microbes and their associated metabolic pathways and immunogenic properties.


Subject(s)
Fatty Acids, Volatile/immunology , Gastrointestinal Microbiome/immunology , Immunoglobulin E/immunology , Intestinal Mucosa/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Immunoglobulin A/immunology , Intestinal Mucosa/microbiology , Mice
17.
Am J Pathol ; 188(11): 2589-2604, 2018 11.
Article in English | MEDLINE | ID: mdl-30121255

ABSTRACT

A recently identified feature of the host response to infection with helminth parasites is suppression of concomitant disease. Dendritic cells (DCs) exposed to antigens from the tapeworm Hymenolepis diminuta significantly reduce the severity of dinitrobenzene sulfonic acid-induced colitis in mice. Here we elucidate mechanisms underlying this cellular immunotherapy. We show a requirement for Ccr7 expression on transferred H. diminuta antigen-treated (HD)-DCs, suggesting that homing to secondary lymphoid tissues is important for suppression of colitis. Furthermore, sodium metaperiodate-sensitive helminth-derived glycans are required to drive the anti-colitic response in recipient mice. Induction of Th2-type cytokines and Gata-3+Cd4+ cells in secondary lymphoid tissues is dependent on major histocompatibility complex class II (MHC II) protein expression on transferred DCs, although remarkably, transfer of MHC II-/- HD-DCs still attenuated dinitrobenzene sulfonic acid-induced colitis in recipient mice. Moreover, transfer of Cd4+ splenic T cells retrieved from mice administered MHC II-/- HD-DCs suppressed dinitrobenzene sulfonic acid-induced colitis in recipient mice. Our studies reveal that HD-DCs can suppress colitis via an alternative MHC II-independent pathway that involves, in part, mobilization of T-cell responses. These data support the utility of HD-DCs in blocking colitis, revealing a requirement for Ccr7 and providing for HD-DC autologous immunotherapy for disease in which MHC II expression and/or function is compromised.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antigen Presentation/immunology , Antigens, Helminth/immunology , CD4-Positive T-Lymphocytes/immunology , Colitis/prevention & control , Dendritic Cells/immunology , Histocompatibility Antigens Class II/physiology , Adoptive Transfer , Animals , Colitis/chemically induced , Colitis/immunology , Cytokines , Hymenolepis diminuta/immunology , Immunotherapy , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout
18.
Curr Opin Immunol ; 54: 20-27, 2018 10.
Article in English | MEDLINE | ID: mdl-29864675

ABSTRACT

The trillions of microbes that colonize mucosal surfaces are critical for educating the immune system and microbial-derived signals continually shape and set the tone of immune responses. Although Type 2 immune responses are important for mediating protection from helminth infection they also underlie atopy and allergy. Microbes modulate Type 2 immune responses through effects on Type 2 cytokines, dendritic cells and regulatory T cells. Microbial colonization in the gut, the lung and the skin during an early and critical time period in immune development appears to be of particular importance for tolerance induction and regulation of aberrant Type 2 immune responses. This is illustrated by studies showing microbial alterations in early life that are associated with allergies later in life.


Subject(s)
Hypersensitivity/immunology , Hypersensitivity/microbiology , Microbiota/immunology , Th2 Cells/immunology , Animals , Cytokines/immunology , Dendritic Cells/immunology , Humans , T-Lymphocytes, Regulatory/immunology
19.
Immunol Rev ; 279(1): 63-69, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28856735

ABSTRACT

All mucosal surfaces are colonized with a vast number of microbes, which are essential for stimulating and regulating the immune system. While intrinsic and innate mechanisms exist to promote a strong barrier between the microbiota and the host to ensure compartmentalization, the microbiota is also able to induce robust adaptive immunity. In this review, we discuss the interplay between the microbiota and the adaptive immune system, with a focus on the induction of mucosal and systemic antibody responses and newly defined roles of maternal antibodies. We also highlight recent studies that aim to decipher microbial antigen-specificity of the T-cell compartment.


Subject(s)
Adaptive Immunity , Mucous Membrane/immunology , T-Lymphocytes/immunology , Animals , Antibodies/metabolism , Antigens, Bacterial/immunology , Humans , Immunity, Humoral , Immunity, Maternally-Acquired , Mucous Membrane/microbiology , T-Cell Antigen Receptor Specificity
20.
Curr Protoc Immunol ; 117: 23.1.1-23.1.13, 2017 Apr 03.
Article in English | MEDLINE | ID: mdl-28369684

ABSTRACT

Mouse models are used extensively to study human health and to investigate the mechanisms underlying human disease. In the past, most animal studies were performed without taking into consideration the impact of the microbiota. However, the microbiota that colonizes all body surfaces, including the gastrointestinal tract, respiratory tract, genitourinary tract, and skin, heavily impacts nearly every aspect of host physiology. When performing studies utilizing mouse models it is critical to understand that the microbiome is heavily impacted by environmental factors, including (but not limited to) food, bedding, caging, and temperature. In addition, stochastic changes in the microbiota can occur over time that also play a role in shaping microbial composition. These factors lead to massive variability in the composition of the microbiota between animal facilities and research institutions, and even within a single facility. Lack of experimental reproducibility between research groups has highlighted the necessity for rigorously controlled experimental designs in order to standardize the microbiota between control and experimental animals. Well controlled experiments are mandatory in order to reduce variability and allow correct interpretation of experimental results, not just of host-microbiome studies but of all mouse models of human disease. The protocols presented are aimed to design experiments that control the microbiota composition between different genetic strains of experimental mice within an animal unit. © 2017 by John Wiley & Sons, Inc.


Subject(s)
Gastrointestinal Microbiome , Quality Control , Animals , Fecal Microbiota Transplantation/methods , Female , Genetic Background , Male , Mice , Mice, Transgenic , Models, Animal , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...