Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Biosci (Landmark Ed) ; 29(6): 231, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38940039

ABSTRACT

The inhibitors of mammalian target of rapapmycin (mTOR), everolimus, temsirolimus and rapamycin, have a wide range of clinical utility; however, as is inevitably the case with other chemotherapeutic agents, resistance development constrains their effectiveness. One putative mechanism of resistance is the promotion of autophagy, which is a direct consequence of the inhibition of the mTOR signaling pathway. Autophagy is primarily considered to be a cytoprotective survival mechanism, whereby cytoplasmic components are recycled to generate energy and metabolic intermediates. The autophagy induced by everolimus and temsirolimus appears to play a largely protective function, whereas a cytotoxic function appears to predominate in the case of rapamycin. In this review we provide an overview of the autophagy induced in response to mTOR inhibitors in different tumor models in an effort to determine whether autophagy targeting could be of clinical utility as adjuvant therapy in association with mTOR inhibition.


Subject(s)
Autophagy , MTOR Inhibitors , TOR Serine-Threonine Kinases , Humans , Autophagy/drug effects , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism , MTOR Inhibitors/pharmacology , MTOR Inhibitors/therapeutic use , Animals , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/metabolism , Signal Transduction/drug effects , Antineoplastic Agents/pharmacology , Cytoprotection/drug effects , Sirolimus/analogs & derivatives , Sirolimus/pharmacology
2.
Biochem Pharmacol ; 226: 116385, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38909784

ABSTRACT

We have previously demonstrated that androgen-dependent prostate cancer (PCa) cell lines enter a state of senescence following exposure to androgen deprivation therapies (ADT). ADT-induced senescence was found to be transient, as senescent cells develop castration resistance and re-emerge into a proliferative state even under continuous androgen deprivation in vitro. Moreover, the BCL-XL/BCL-2 inhibitor, ABT-263 (navitoclax), an established senolytic agent, promoted apoptosis of senescent PCa cells, suppressing proliferative recovery and subsequent tumor cell outgrowth. As this strategy has not previously been validated in vivo, we used a clinically relevant, syngeneic murine model of PCa, where mice were either castrated or castrated followed by the administration of ABT-263. Our results largely confirm the outcomes previously reported in vitro; specifically, castration alone results in a transient tumor growth suppression with characteristics of senescence, which is prolonged by exposure to ABT-263. Most critically, mice that underwent castration followed by ABT-263 experienced a statistically significant prolongation in survival, with an increase of 14.5 days in median survival time (56 days castration alone vs. 70.5 days castration + ABT-263). However, as is often the case in studies combining the promotion of senescence with a senolytic (the "one-two" punch approach), the suppression of tumor growth by the inclusion of the senolytic agent was transient, allowing for tumor regrowth once the drug treatment was terminated. Nevertheless, the results of this work suggest that the "one-two" punch senolytic strategy in PCa may effectively interfere with, diminish, or delay the development of the lethal castration-resistant phenotype.


Subject(s)
Aniline Compounds , Cellular Senescence , Prostatic Neoplasms , Sulfonamides , Male , Animals , Mice , Cellular Senescence/drug effects , Cellular Senescence/physiology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology , Aniline Compounds/pharmacology , Aniline Compounds/therapeutic use , Sulfonamides/pharmacology , Humans , Cell Line, Tumor , Senotherapeutics/pharmacology , Senotherapeutics/therapeutic use , Androgen Antagonists/pharmacology , Androgen Antagonists/therapeutic use , Androgens/metabolism , Androgens/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Mice, Inbred C57BL
3.
Front Endocrinol (Lausanne) ; 15: 1298423, 2024.
Article in English | MEDLINE | ID: mdl-38567308

ABSTRACT

Estrogen receptor positive (ER+) breast cancer is the most common breast cancer diagnosed annually in the US with endocrine-based therapy as standard-of-care for this breast cancer subtype. Endocrine therapy includes treatment with antiestrogens, such as selective estrogen receptor modulators (SERMs), selective estrogen receptor downregulators (SERDs), and aromatase inhibitors (AIs). Despite the appreciable remission achievable with these treatments, a substantial cohort of women will experience primary tumor recurrence, subsequent metastasis, and eventual death due to their disease. In these cases, the breast cancer cells have become resistant to endocrine therapy, with endocrine resistance identified as the major obstacle to the medical oncologist and patient. To combat the development of endocrine resistance, the treatment options for ER+, HER2 negative breast cancer now include CDK4/6 inhibitors used as adjuvants to antiestrogen treatment. In addition to the dysregulated activity of CDK4/6, a plethora of genetic and biochemical mechanisms have been identified that contribute to endocrine resistance. These mechanisms, which have been identified by lab-based studies utilizing appropriate cell and animal models of breast cancer, and by clinical studies in which gene expression profiles identify candidate endocrine resistance genes, are the subject of this review. In addition, we will discuss molecular targeting strategies now utilized in conjunction with endocrine therapy to combat the development of resistance or target resistant breast cancer cells. Of approaches currently being explored to improve endocrine treatment efficacy and patient outcome, two adaptive cell survival mechanisms, autophagy, and "reversible" senescence, are considered molecular targets. Autophagy and/or senescence induction have been identified in response to most antiestrogen treatments currently being used for the treatment of ER+ breast cancer and are often induced in response to CDK4/6 inhibitors. Unfortunately, effective strategies to target these cell survival pathways have not yet been successfully developed. Thus, there is an urgent need for the continued interrogation of autophagy and "reversible" senescence in clinically relevant breast cancer models with the long-term goal of identifying new molecular targets for improved treatment of ER+ breast cancer.


Subject(s)
Breast Neoplasms , Animals , Female , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Estrogen Receptor Modulators/pharmacology , Estrogen Receptor Modulators/therapeutic use , Drug Resistance, Neoplasm/genetics , Neoplasm Recurrence, Local/drug therapy , Receptors, Estrogen/metabolism , Autophagy
4.
J Pharmacol Exp Ther ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453523

ABSTRACT

The advent of HER2-targeted monoclonal antibodies such as trastuzumab has significantly improved the clinical outcomes for patients with breast cancer overexpressing HER2, and more recently also for gastric cancers. However, the development of resistance, as is frequently the case for other antineoplastic modalities, constrains clinical efficacy. Multiple molecular mechanisms and signaling pathways have been investigated for their potential involvement in the development of resistance to HER2-targeted therapies, among which is autophagy. Autophagy is an inherent cellular mechanism whereby cytoplasmic components are selectively degraded to maintain cellular homeostasis via the generation of energy and metabolic intermediates. Although the cytoprotective form of autophagy is thought to predominate, other forms of autophagy have also been identified in response to chemotherapeutic agents in various tumor models; these include cytotoxic, cytostatic, and non-protective functional forms of autophagy. In this review, we provide an overview of the autophagic machinery induced in response to HER2-targeted monoclonal antibodies, with a focus on trastuzumab and trastuzumab-emtansine, in an effort to determine whether autophagy targeting or modulation could be translated clinically to increase their effectiveness and/or overcome resistance development. Significance Statement This manuscript is one in a series of papers that investigate the different roles of the autophagic machinery induced in response to versatile anti-neoplastic agents in various cancer models. This series designed in an attempt to build a conclusion whether autophagy targeting or modulation is an effective adjuvant strategy to increase the efficacy of chemotherapeutic agents. In this review, we shed the light on the relationship between the autophagic machinery and HER2 targeted therapies.

5.
Autophagy ; 20(6): 1213-1246, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38442890

ABSTRACT

Macroautophagy/autophagy is a complex degradation process with a dual role in cell death that is influenced by the cell types that are involved and the stressors they are exposed to. Ferroptosis is an iron-dependent oxidative form of cell death characterized by unrestricted lipid peroxidation in the context of heterogeneous and plastic mechanisms. Recent studies have shed light on the involvement of specific types of autophagy (e.g. ferritinophagy, lipophagy, and clockophagy) in initiating or executing ferroptotic cell death through the selective degradation of anti-injury proteins or organelles. Conversely, other forms of selective autophagy (e.g. reticulophagy and lysophagy) enhance the cellular defense against ferroptotic damage. Dysregulated autophagy-dependent ferroptosis has implications for a diverse range of pathological conditions. This review aims to present an updated definition of autophagy-dependent ferroptosis, discuss influential substrates and receptors, outline experimental methods, and propose guidelines for interpreting the results.Abbreviation: 3-MA:3-methyladenine; 4HNE: 4-hydroxynonenal; ACD: accidentalcell death; ADF: autophagy-dependentferroptosis; ARE: antioxidant response element; BH2:dihydrobiopterin; BH4: tetrahydrobiopterin; BMDMs: bonemarrow-derived macrophages; CMA: chaperone-mediated autophagy; CQ:chloroquine; DAMPs: danger/damage-associated molecular patterns; EMT,epithelial-mesenchymal transition; EPR: electronparamagnetic resonance; ER, endoplasmic reticulum; FRET: Försterresonance energy transfer; GFP: green fluorescent protein;GSH: glutathione;IF: immunofluorescence; IHC: immunohistochemistry; IOP, intraocularpressure; IRI: ischemia-reperfusion injury; LAA: linoleamide alkyne;MDA: malondialdehyde; PGSK: Phen Green™ SK;RCD: regulatedcell death; PUFAs: polyunsaturated fatty acids; RFP: red fluorescentprotein;ROS: reactive oxygen species; TBA: thiobarbituricacid; TBARS: thiobarbituric acid reactive substances; TEM:transmission electron microscopy.


Subject(s)
Autophagy , Ferroptosis , Ferroptosis/physiology , Humans , Autophagy/physiology , Animals , Consensus
6.
Mol Pharmacol ; 105(5): 313-327, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38458774

ABSTRACT

Artificial intelligence (AI) platforms, such as Generative Pretrained Transformer (ChatGPT), have achieved a high degree of popularity within the scientific community due to their utility in providing evidence-based reviews of the literature. However, the accuracy and reliability of the information output and the ability to provide critical analysis of the literature, especially with respect to highly controversial issues, has generally not been evaluated. In this work, we arranged a question/answer session with ChatGPT regarding several unresolved questions in the field of cancer research relating to therapy-induced senescence (TIS), including the topics of senescence reversibility, its connection to tumor dormancy, and the pharmacology of the newly emerging drug class of senolytics. ChatGPT generally provided responses consistent with the available literature, although occasionally overlooking essential components of the current understanding of the role of TIS in cancer biology and treatment. Although ChatGPT, and similar AI platforms, have utility in providing an accurate evidence-based review of the literature, their outputs should still be considered carefully, especially with respect to unresolved issues in tumor biology. SIGNIFICANCE STATEMENT: Artificial Intelligence platforms have provided great utility for researchers to investigate biomedical literature in a prompt manner. However, several issues arise when it comes to certain unresolved biological questions, especially in the cancer field. This work provided a discussion with ChatGPT regarding some of the yet-to-be-fully-elucidated conundrums of the role of therapy-induced senescence in cancer treatment and highlights the strengths and weaknesses in utilizing such platforms for analyzing the scientific literature on this topic.


Subject(s)
Artificial Intelligence , Neoplasms , Humans , Reproducibility of Results , Senotherapeutics
SELECTION OF CITATIONS
SEARCH DETAIL