Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Immunol ; 40(2): 310-320, 2020 02.
Article in English | MEDLINE | ID: mdl-31897777

ABSTRACT

Immunoglobulin replacement therapy (IGRT) can protect against lung function decline in CVID. We tested whether increasing IgG dosage was beneficial in patients who exhibited a decline in forced expiratory flow at 25-75% (FEF25-75%) even though they were receiving IgG doses within the therapeutic range. Of 189 CVID patients seen over 12 years, 38 patients met inclusion criteria, were seen on ≥ 3 visits, and demonstrated a ≥ 10% decrease in FEF25-75% from visits 1 to 2. FEF25-75%, forced expiratory flow at 1 s (FEV1), and FEV1/FVC at visit 3 were compared among those with non-dose adjustment (non-DA) versus additional IgG dose adjustment (DA). Three FEF25-75% tiers were identified: top (> 80% predicted), middle (50-80%), and bottom (< 50%). DA and non-DA groups did not differ in clinical infections or bronchodilator use, although the non-DA group tended to use more antibiotics. In the top, normal tier, FEF25-75% increased in DA, but the change did not achieve statistical significance. In the middle moderate obstruction tier, visit 3 FEF25-75% increased among DA but not non-DA sets (11.8 ± 12.4%, p = 0.003 vs. 0.3 ± 9.9%, p = 0.94). Improvement in FEV1/FVC at visit 3 was also significant among DA vs. non-DA (7.2 ± 12.4%, p = 0.04 vs. - 0.2 ± 2.7%, p = 0.85). In the bottom, severe tier, FEF25-75% was unchanged in DA (- 0.5 ± 5.2%, p = 0.79), but increased in non-DA (5.1 ± 5.2%, p = 0.02). Among IGRT CVID patients with moderate but not severe obstruction as assessed by spirometry, increasing IgG dosage led to an increase in FEF25-75% and FEV1/FVC.


Subject(s)
Common Variable Immunodeficiency/drug therapy , Immunoglobulin G/therapeutic use , Immunoglobulins, Intravenous/therapeutic use , Lung/metabolism , Respiratory Function Tests/methods , Adult , Antibiotic Prophylaxis , Biomarkers, Pharmacological , Drug Dosage Calculations , Female , Humans , Lung/pathology , Male , Maximal Midexpiratory Flow Rate , Middle Aged , Treatment Outcome
4.
Methods Mol Biol ; 1220: 3-10, 2015.
Article in English | MEDLINE | ID: mdl-25388241

ABSTRACT

Following the discovery of mast cells (or mastzellen) by the prolific physician researcher, Paul Ehrlich, many advances have improved our understanding of these cells and their fascinating biology. The discovery of immunoglobulin E and receptors for IgE and IgG on mast cells heralded further in vivo and in vitro studies, using molecular technologies and gene knockout models. Mast cells express an array of inflammatory mediators including tryptase, histamine, cytokines, chemokines, and growth factors. They play a role in many varying disease states, from atopic diseases, parasitic infections, hematological malignancies, and arthritis to osteoporosis. This review will attempt to summarize salient evolving areas in mast cell research over the last few centuries that have led to our current understanding of this pivotal multifunctional cell.


Subject(s)
Cell Biology/history , Mast Cells , Animals , History, 19th Century , History, 20th Century , Humans , Mast Cells/cytology , Mast Cells/immunology , Mast Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL