Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Brain Res ; 423: 113745, 2022 04 09.
Article in English | MEDLINE | ID: mdl-35033611

ABSTRACT

Vocal courtship is vital to the reproductive success of many vertebrates and is therefore a highly-motivated behavioral state. Catecholamines have been shown to play an essential role in the expression and maintenance of motivated vocal behavior, such as the coordination of vocal-motor output in songbirds. However, it is not well-understood if this relationship applies to anamniote vocal species. Using the plainfin midshipman fish model, we tested whether specific catecholaminergic (i.e., dopaminergic and noradrenergic) nuclei and nodes of the social behavior network (SBN) are differentially activated in vocally courting (humming) versus non-humming males. Herein, we demonstrate that tyrosine hydroxylase immunoreactive (TH-ir) neuron number in the noradrenergic locus coeruleus (LC) and induction of cFos (an immediate early gene product and proxy for neural activation) in the preoptic area differentiated humming from non-humming males. Furthermore, we found relationships between activation of the LC and SBN nuclei with the total amount of time that males spent humming, further reinforcing a role for these specific brain regions in the production of motivated reproductive-related vocalizations. Finally, we found that patterns of functional connectivity between catecholaminergic nuclei and nodes of the SBN differed between humming and non-humming males, supporting the notion that adaptive behaviors (such as the expression of advertisement hums) emerge from the interactions between various catecholaminergic nuclei and the SBN.


Subject(s)
Batrachoidiformes/physiology , Brain/metabolism , Catecholamines/metabolism , Locus Coeruleus/metabolism , Nerve Net/metabolism , Social Behavior , Vocalization, Animal/physiology , Animals , Male , Norepinephrine/metabolism
2.
Brain Res ; 1701: 177-188, 2018 12 15.
Article in English | MEDLINE | ID: mdl-30217439

ABSTRACT

Vocal species use acoustic signals to facilitate diverse behaviors such as mate attraction and territorial defense. However, little is known regarding the neural substrates that interpret such divergent conspecific signals. Using the plainfin midshipman fish model, we tested whether specific catecholaminergic (i.e., dopaminergic and noradrenergic) nuclei and nodes of the social behavior network (SBN) are differentially responsive following exposure to playbacks of divergent social signals in sneaker males. We chose sneaker (type II) males since they attempt to steal fertilizations from territorial type I males who use an advertisement call (hum) to attract females yet are also subjected to vocal agonistic behavior (grunts) by type I males. We demonstrate that induction of cFos (an immediate early gene product and proxy for neural activation) in two forebrain dopaminergic nuclei is greater in sneaker males exposed to hums but not grunts compared to ambient noise, suggesting hums preferentially activate these nuclei, further asserting dopamine as an important regulator of social-acoustic behaviors. Moreover, acoustic exposure to social signals with divergent salience engendered contrasting shifts in functional connectivity between dopaminergic nuclei and nodes of the SBN, supporting the idea that interactions between these two circuits may underlie adaptive decision-making related to intraspecific male competition.


Subject(s)
Batrachoidiformes/physiology , Dopaminergic Neurons/physiology , Sexual Behavior, Animal/physiology , Acoustic Stimulation/methods , Adrenergic Neurons/physiology , Animals , Auditory Perception/physiology , Batrachoidiformes/metabolism , Catecholamines/physiology , Cell Nucleus , Hearing/physiology , Male , Reproduction/physiology , Social Behavior , Vocalization, Animal/physiology
3.
Integr Comp Biol ; 57(4): 820-834, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28992072

ABSTRACT

Little is known regarding the coordination of audition with decision-making and subsequent motor responses that initiate social behavior including mate localization during courtship. Using the midshipman fish model, we tested the hypothesis that the time spent by females attending and responding to the advertisement call is correlated with the activation of a specific subset of catecholaminergic (CA) and social decision-making network (SDM) nuclei underlying auditory- driven sexual motivation. In addition, we quantified the relationship of neural activation between CA and SDM nuclei in all responders with the goal of providing a map of functional connectivity of the circuitry underlying a motivated state responsive to acoustic cues during mate localization. In order to make a baseline qualitative comparison of this functional brain map to unmotivated females, we made a similar correlative comparison of brain activation in females who were unresponsive to the advertisement call playback. Our results support an important role for dopaminergic neurons in the periventricular posterior tuberculum and ventral thalamus, putative A11 and A13 tetrapod homologues, respectively, as well as the posterior parvocellular preoptic area and dorsomedial telencephalon, (laterobasal amygdala homologue) in auditory attention and appetitive sexual behavior in fishes. These findings may also offer insights into the function of these highly conserved nuclei in the context of auditory-driven reproductive social behavior across vertebrates.


Subject(s)
Attention , Batrachoidiformes/physiology , Motivation , Prosencephalon/physiology , Social Behavior , Vocalization, Animal , Animals , Decision Making , Dopaminergic Neurons/physiology , Female , Sexual Behavior, Animal
4.
Brain Behav Evol ; 86(2): 131-44, 2015.
Article in English | MEDLINE | ID: mdl-26355302

ABSTRACT

Catecholamines, which include the neurotransmitters dopamine and noradrenaline, are known modulators of sensorimotor function, reproduction, and sexually motivated behaviors across vertebrates, including vocal-acoustic communication. Recently, we demonstrated robust catecholaminergic (CA) innervation throughout the vocal motor system in the plainfin midshipman fish Porichthys notatus, a seasonal breeding marine teleost that produces vocal signals for social communication. There are 2 distinct male reproductive morphs in this species: type I males establish nests and court females with a long-duration advertisement call, while type II males sneak spawn to steal fertilizations from type I males. Like females, type II males can only produce brief, agonistic, grunt type vocalizations. Here, we tested the hypothesis that intrasexual differences in the number of CA neurons and their fiber innervation patterns throughout the vocal motor pathway may provide neural substrates underlying divergence in reproductive behavior between morphs. We employed immunofluorescence (-ir) histochemistry to measure tyrosine hydroxylase (TH; a rate-limiting enzyme in catecholamine synthesis) neuron numbers in several forebrain and hindbrain nuclei as well as TH-ir fiber innervation throughout the vocal pathway in type I and type II males collected from nests during the summer reproductive season. After controlling for differences in body size, only one group of CA neurons displayed an unequivocal difference between male morphs: the extraventricular vagal-associated TH-ir neurons, located just lateral to the dimorphic vocal motor nucleus (VMN), were significantly greater in number in type II males. In addition, type II males exhibited greater TH-ir fiber density within the VMN and greater numbers of TH-ir varicosities with putative contacts on vocal motor neurons. This strong inverse relationship between the predominant vocal morphotype and the CA innervation of vocal motor neurons suggests that catecholamines may function to inhibit vocal output in midshipman. These findings support catecholamines as direct modulators of vocal behavior, and differential CA input appears reflective of social and reproductive behavioral divergence between male midshipman morphs.


Subject(s)
Brain/cytology , Catecholamines/metabolism , Motor Neurons/metabolism , Nerve Fibers/physiology , Sex Characteristics , Vocalization, Animal/physiology , Animals , Batrachoidiformes/physiology , Female , Male , Sexual Behavior, Animal/physiology , Tyrosine 3-Monooxygenase/metabolism
5.
PLoS One ; 10(4): e0121914, 2015.
Article in English | MEDLINE | ID: mdl-25849450

ABSTRACT

In seasonal breeding vertebrates, hormone regulation of catecholamines, which include dopamine and noradrenaline, may function, in part, to modulate behavioral responses to conspecific vocalizations. However, natural seasonal changes in catecholamine innervation of auditory nuclei is largely unexplored, especially in the peripheral auditory system, where encoding of social acoustic stimuli is initiated. The plainfin midshipman fish, Porichthys notatus, has proven to be an excellent model to explore mechanisms underlying seasonal peripheral auditory plasticity related to reproductive social behavior. Recently, we demonstrated robust catecholaminergic (CA) innervation throughout the auditory system in midshipman. Most notably, dopaminergic neurons in the diencephalon have widespread projections to auditory circuitry including direct innervation of the saccule, the main endorgan of hearing, and the cholinergic octavolateralis efferent nucleus (OE) which also projects to the inner ear. Here, we tested the hypothesis that gravid, reproductive summer females show differential CA innervation of the auditory system compared to non-reproductive winter females. We utilized quantitative immunofluorescence to measure tyrosine hydroxylase immunoreactive (TH-ir) fiber density throughout central auditory nuclei and the sensory epithelium of the saccule. Reproductive females exhibited greater density of TH-ir innervation in two forebrain areas including the auditory thalamus and greater density of TH-ir on somata and dendrites of the OE. In contrast, non-reproductive females had greater numbers of TH-ir terminals in the saccule and greater TH-ir fiber density in a region of the auditory hindbrain as well as greater numbers of TH-ir neurons in the preoptic area. These data provide evidence that catecholamines may function, in part, to seasonally modulate the sensitivity of the inner ear and, in turn, the appropriate behavioral response to reproductive acoustic signals.


Subject(s)
Batrachoidiformes/physiology , Diencephalon/physiology , Dopaminergic Neurons/physiology , Ear, Inner/innervation , Ear, Inner/physiology , Animals , Batrachoidiformes/anatomy & histology , Behavior, Animal/physiology , Diencephalon/anatomy & histology , Dopaminergic Neurons/cytology , Ear, Inner/anatomy & histology , Female , Reproduction/physiology , Social Behavior
6.
J Exp Biol ; 217(Pt 23): 4244-51, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25324337

ABSTRACT

Blue catfish, Ictalurus furcatus, the largest catfish in North America, produce pectoral stridulation sounds (distress calls) when attacked and held. They have both fish and bird predators, and the frequency spectrum of their sounds is better matched to the hearing of birds than to that of unspecialized fish predators with low frequency hearing. It is unclear whether their sounds evolved to function in air or water. We categorized the calls and how they change with fish size in air and water and compared developmental changes in call parameters with stridulation motions captured with a high-speed camera. Stridulation sounds consist of a variable series of pulses produced during abduction of the pectoral spine. Pulses are caused by quick rapid spine rotations (jerks) of the pectoral spine that do not change with fish size although larger individuals generate longer, higher amplitude pulses with lower peak frequencies. There are longer pauses between jerks, and therefore fewer jerks and fewer pulses, in larger fish, which take longer to abduct their spines and therefore produce a longer series of pulses per abduction sweep. Sounds couple more effectively to water (1400 times greater pressure in Pascals at 1 m), are more sharply tuned and have lower peak frequencies than in air. Blue catfish stridulation sounds appear to be specialized to produce underwater signals although most of the sound spectrum includes frequencies matched to catfish hearing but largely above the hearing range of unspecialized fishes.


Subject(s)
Animal Communication , Ictaluridae/physiology , Sound , Air , Animal Structures/physiology , Animals , Body Size , Hearing , Video Recording , Water
SELECTION OF CITATIONS
SEARCH DETAIL