Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters











Publication year range
4.
Heliyon ; 9(12): e22783, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38058428

ABSTRACT

In recent years, the scientific community has focused on traditional natural products and their potential therapeutic benefits. Berberine is a plant-derived isoquinoline alkaloid with a variety of biological properties and identified as a promising pharmacophore for discovering new therapeutic agents against various diseases. However, unfavorable pharmacokinetic properties of berberine have limited its clinical application so much that researchers pursue its structure modification to overcome this problem. This study focuses on the synthesis of new berberine derivatives to improve its antioxidant and antimicrobial potentials, which were characterized using CHNO and NMR instruments. Berberine extracted from barberry root was nitrated, reduced to amine and condensed with benzaldehyde derivatives to produce berberine-based Schiff bases. The H atom donating ability of all compounds was measured against DPPH free radicals, with IC50 values ranging from 18.28 to 108.20 µg ml-1. All berberine-based Schiff bases exhibited stronger antioxidant activity than nitro-berberine and amino-berberine. Only Schiff base derived from 4-hydroxybenzaldehyde showed slightly better antioxidant effects than original berberine. The inhibitory effects of the synthesized compounds were evaluated against important pathogenic fungal and bacterial strains using disk diffusion assays, with inhibition zone diameters ranging from 8.36 to 25.48 µg ml-1. Berberine itself only affected Candida albicans fungus. Nitrated berberine was effective against all microorganisms except Gram-negative Acinetobacter baumannii. The results suggest that structural modifications and functionalization can enhance the antimicrobial and antioxidant properties of berberine.

5.
Sci Rep ; 13(1): 20421, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37989862

ABSTRACT

The physicochemical properties of materials change significantly in nanometer dimensions. Therefore, several methods have been proposed for the synthesis of nanoparticles. Plant extracts and essential oils are applied as natural and economic resources to prepare nanomaterials especially metal nanoparticles. In this project, a green, simple and efficient method has been designed for the synthesis of Cu nanoparticles using Purple cabbage extract as a reducing and stabilizing agent. They were successfully loaded onto a new Ag complex containing 1,3,5-triazine Schiff base as ligand to form Cu@Ag-CPX nanocomposite. Phytochemical contents of extract were identified by standard qualitative analyses. The chemical structure of all synthesized compounds was characterized using spectral data. In FT-IR, coordination of C=N bond of Schiff base ligand to Ag+ ions shifted the absorption band from 1641 to 1632 cm-1. The UV-Vis spectrum of Cu@Ag-CPX nanocomposite shown the peak related to Cu nanoparticles in the region of around 251 nm. 5:7 molar ratio of Cu to Ag in Cu@Ag-CPX was determined using ICP-OES. The FESEM, TEM, and DLS techniques provided valuable insights into the morphology and size distribution of the nanocomposite, revealing the presence of rods and monodispersed particles with specific diameter ranges. These analyses of the nanocomposite displayed rods with diameters from 40 to 62 nm as well as monodispersed and uniform particles with average diameter of 45 nm, respectively. The presence of elements including carbon, nitrogen, oxygen, Cu and Ag was proved by EDX-EDS analysis. The XRD pattern of Cu@Ag-CPX shown the diffraction peaks of Cu and Ag particles at 2θ values of 10°-80°, and confirmed its crystalline nature. The inhibitory properties of the synthesized compounds were evaluated in vitro against four Gram-negative and two Gram-positive bacteria, as well as two fungal strains. The MIC, MBC and MFC values obtained from microdilution and streak plate sensitivity tests were ranged from 128 to 4096 µg ml-1. While Cu nanoparticles and Ag complexes were effective against some pathogens, they were not effective against all them. However, the growth of all tested microbial strains was inhibited by Cu@Ag-CPX nanocomposite, and makes it as a new promising antimicrobial agent. Modification of nanocomposite in terms of nanoparticle and complex can improve its blocking activities.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Spectroscopy, Fourier Transform Infrared , Schiff Bases/chemistry , Ligands , Anti-Infective Agents/pharmacology , Metal Nanoparticles/chemistry , Plant Extracts/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests
6.
Sci Rep ; 13(1): 19104, 2023 Nov 04.
Article in English | MEDLINE | ID: mdl-37925547

ABSTRACT

A hydrophilic cobalt/copper heterogeneous bimetallic catalyst named mTEG-CS-Co/Cu-Schiff-base/IL was successfully synthesized from chitosan polysaccharide. The new catalyst was investigated and confirmed using various techniques including FT-IR, FE-SEM, EDX-EDS, XRD, TEM, TGA, AFM, NMR and ICP. The catalyst exhibited powerful catalyst activity for the tandem one pot oxidative chromopyrimidine reaction from benzyl alcohols under mild conditions, utilizing air as a clean source in a green protocol. The catalyst was compatible with a wide range of benzyl alcohols, and aldehydes formed in situ, and bis-aldehydes synthesized were condensed with urea/4­hydroxycumarin to provide favorable products in good yields for all derivatives (14 new derivatives). The presence of tri-ethylene glycol and imidazolium moieties with hydrophilic properties on the mTEG-CS-Co/Cu-Schiff-base/IL nanohybrid provides dispersion of the nanohybrid particles in water, leading to higher catalytic performance. Furthermore, the reaction exhibited several other notable features, including low catalyst loading, the ability to be recycled for up to 6 stages, high atom economy, a simple work procedure, short reaction time, utilization of an environmentally friendly nanohybrid, and the replacement of volatile and organic solvents with water solvent.

7.
Inorg Chem ; 61(28): 10678-10693, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35793458

ABSTRACT

In this paper, a new Mn-based metal-organic framework [UoB-6] was obtained via a one-step ultrasonic irradiation method with the ligand (H2bdda: 4,4'-(1,4-phenylenebis(azaneylylidene))bis(methaneylylidene))dibenzoic acid. The structural integrity of the synthesized BioMOF-Mn was corroborated by FT-IR, EDX, ICP, XRD, TEM, DLS, FESEM, and BET-BJH analyses. The aerobic oxidative domino reaction of benzyl alcohols or aldehydes with dimedone derivatives was performed in the presence of the UoB-6 catalyst to produce xanthene derivatives in good yields. Hot filtration and Hg poisoning tests proved the heterogeneous nature of the catalyst. Novel synthesized xanthene-based bis-aldehydes were introduced as potent HDAC1 inhibitors according to molecular docking calculations. Finally, the inhibitory activities of Mn-MOF nanoparticles were evaluated on Escherichia coli and Candida albicans. The MIC, MBC, and MFC values were determined from 2048 to 4096 µg·mL-1 according to antimicrobial susceptibility testing methods. The inhibitory effects of antimicrobial agents can be exacerbated when loaded on BioMOFs.


Subject(s)
Anti-Infective Agents , Xanthenes , Aldehydes/chemistry , Anti-Infective Agents/pharmacology , Molecular Docking Simulation , Spectroscopy, Fourier Transform Infrared , Xanthenes/chemistry , Xanthenes/pharmacology
8.
Sci Rep ; 12(1): 3771, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35260647

ABSTRACT

In this project, the new catalyst copper defines as Fe3O4@Pectin@(CH2)3-Acetamide-Cu(II) was successfully manufactured and fully characterized by different techniques, including FT-IR, XRD, TEM, FESEM, EDX, VSM, TGA, and ICP analysis. All results showed that copper was successfully supported on the polymer-coated magnetic nanoparticles. One of the most important properties of a catalyst is the ability to be prepared from simple materials such as pectin that's a biopolymer that is widely found in nature. The catalytic activity of Fe3O4@Pectin@(CH2)3-Acetamide-Cu(II) was examined in a classical, one pot, and the three-component reaction of terminal alkynes, alkyl halides, and sodium azide in water and observed, proceeding smoothly and completed in good yields and high regioselectivity. The critical potential interests of the present method include high yields, recyclability of catalyst, easy workup, using an eco-friendly solvent, and the ability to sustain a variety of functional groups, which give economical as well as ecological rewards. The capability of the nanocomposite was compared with previous works, and the nanocomposite was found more efficient, economical, and reproducible. Also, the catalyst can be easily removed from the reaction solution using an external magnet and reused for five runs without reduction in catalyst activity.


Subject(s)
Magnetite Nanoparticles , Schiff Bases , Amidines , Click Chemistry , Copper/chemistry , Magnetite Nanoparticles/chemistry , Pectins/chemistry , Spectroscopy, Fourier Transform Infrared , Triazoles/chemistry
9.
Front Chem ; 9: 747016, 2021.
Article in English | MEDLINE | ID: mdl-34912778

ABSTRACT

Cellulose, as a green and available phytochemical, was immobilized on the surface of magnetite nanoparticles then doped with imidazole and Co. complex (Fe3O4@CNF ∼ ImSBL ∼ Co.) and used as a water-dispersible, recyclable and efficient nano catalyst for the synthesis of C-C cross-coupling reactions including fluoride-free Hiyama and Suzuki reactions in an aqueous medium as an efficient and vital solvent, due to their high application and importance in various fields of science. Different spectroscopic and microscopic techniques were used for the catalyst characterization such XRD, FESEM, TEM, FT-IR, EDX, DLS, VSM, UV-Vis, and ICP analyses. The presence of imidazole as ionic section tags with hydrophilic character on the Co-complex supported on magnetic nanoparticles provides dispersion of the catalyst particles in water, which leads to both higher catalytic performance and also facile catalyst recovery and reuse six times by successive extraction and final magnetic separation. High catalytic activity was found for the catalyst and high to excellent efficiency was obtained for all Suzuki (80-98% yield; E factor: 1.1-1.9) and Hiyama (87-98% yield; E factor: 0.26-1.1) derivatives in short reaction times under mild reaction conditions in the absence of any hazardous or expensive materials. There is not any noticeable by-product found whether for Suzuki or Hiyama derivatives, which reflects the high selectivity and also the lower the E factor the more favorable is the process in view of green chemistry. The bi-aryls were achieved from the reaction of various aryl iodides/bromides and even chlorides as the highly challenging substrates, which are more available and cheaper, with triethoxyphenylsilane or phenylboronic acid. To prove the performance of the catalyst components (synergistic of SBL ∼ Co. and IL), its different homologs were incorporated individually and studied for a model reaction. Exclusively, this is an introductory statement on the use of Cobalt binuclear symmetric ionic liquid catalysts in Hiyama reactions.

10.
Bioinorg Chem Appl ; 2021: 4105853, 2021.
Article in English | MEDLINE | ID: mdl-34335708

ABSTRACT

Here presented a quick and easy synthesis of copper nanoparticles (CuNPs). Pistachio hull extract has been used as a reducing and stabilizing agent in the preparation of CuNPs. This biosynthesis is a kind of supporter of the environment because chemical agents were not used to making nanoparticles, and on the other hand, it prevents the release of pistachio waste in nature and its adverse effects on nature. The biosynthesized CuNPs and CuNPs/silver Schiff base nanocomposite (CSS NC) were characterized by UV-VIS spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and energy-dispersive X-ray spectroscopy (EDS). CuNP and CSS NC antimicrobial activity was examined by both well diffusion and determination MIC methods against four bacteria Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Pseudomonas aeruginosa and two fungi Aspergillus Niger and Candida albicans. CuNPs and CSS NC showed significant antimicrobial activity on the samples, preventing the growth of bacteria and fungi at very low concentrations. CuNPs and CSS NC had the greatest effect on Escherichia coli bacteria and Aspergillus niger fungi. Phenolic compounds are one of the most important antioxidants that are involved in various fields, including pharmacy. Pistacia vera hull is a rich source of phenolic compounds. In this study, the most phenolic compound in Pistacia vera hull is gallic acid and rutin, which has been identified by HPLC analysis. In this study, Pistacia vera hull essential oil analysis was performed by the GC-MS method, in which α-pinene, D-limonene, and isobornyl acetate compounds constitute the highest percentage of Pistacia vera hull essential oil.

11.
RSC Adv ; 11(8): 4339-4355, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-35424405

ABSTRACT

In this work, the new trinuclear manganese catalyst defined as Fe3O4@NFC@NNSM-Mn(iii) was successfully manufactured and fully characterized by different techniques, including FT-IR, XRD, TEM, SEM, EDX, VSM, and ICP analysis. There have been reports of the use of magnetic catalysts for the synthesis of xanthine derivatives. The critical potential interest in the present method include short reaction time, high yields, recyclability of the catalyst, easy workup, and the ability to sustain a variety of functional groups, which give economical as well as ecological rewards. Also, the synthesized catalyst was used as a recyclable trinuclear catalyst in alcohol oxidation reactions at 40 °C. The magnetic catalyst activity of Fe3O4@NFC@NNSM-Mn(iii) could be attributed to the synergistic effects of the catalyst Fe3O4@NFC@NNS-Mn(iii) with melamine. Employing a sustainable and safe low temperature, using an eco-friendly solvent, no need to use any additive, and long-term stability and magnetic recyclability of the catalyst for at least six successive runs are the advantages of the current protocol towards green chemistry. This protocol is a benign, environmentally friendly method for heterocycle synthesis.

12.
RSC Adv ; 11(31): 19203-19220, 2021 May 24.
Article in English | MEDLINE | ID: mdl-35478649

ABSTRACT

Today, most synthetic methods are aimed at carrying out reactions under more efficient conditions and the realization of the twelve principles of green chemistry. Due to the importance and widespread applications of tetrazoles in various industries, especially in the field of pharmaceutical chemistry, and the expansion of the use of nanocatalysts in the preparation of valuable chemical reaction products, we decided to use an (Fe3O4@NFC@NSalophCu)CO2H nanocatalyst in this project. In this study, the synthesis of the nanocatalyst (Fe3O4@NFC@NSalophCu)CO2H was explained in a step-by-step manner. Confirmation of the structure was obtained based on FT-IR, EDX, FE-SEM, TEM, XRD, VSM, DLS, TGA, H-NMR, and CHNO analyses. The catalyst was applied to the synthesis of 5-substituted-1H-tetrazole and 1-substituted-1H-tetrazole derivatives through multi-component reactions (MCRs), and the performance was assessed. With advances in science and technology and increasing environmental pollution, the use of reagents and methods that are less dangerous for the environment has received much attention. Therefore, following green chemistry principles, with the help of the (Fe3O4@NFC@NSalophCu)CO2H salen complex as a nanocatalyst that is recyclable, cheap, safe, and available, the use of water as a green solvent, and reduced reaction times, the synthesis of tetrazoles can be achieved.

13.
RSC Adv ; 11(28): 17413-17430, 2021 May 06.
Article in English | MEDLINE | ID: mdl-35479678

ABSTRACT

A heterogeneous, magnetically recoverable nanocomposite, Fe3O4@NFC@ONSM-Ni(ii) was prepared by immobilization of a novel Ni(ii) Schiff base complex on Fe3O4@NFC nanoparticles followed by treatment with melamine. This trinuclear catalyst has been characterized using several analytical techniques including FT-IR, TEM, Fe-SEM, EDX, DLS, ICP, TGA, VSM, and XRD. It was used as an efficient catalyst for one-pot solvent-free synthesis of 1,4-dihydropyridine and poly-hydro quinoline derivatives through Hantzsch reaction. This catalyst showed remarkable advantage over previously reported catalysts due to suitable conditions, short reaction time, high efficiency and lower catalyst load and timely recovery of the magnetic catalyst. Moreover, the effects of Fe3O4@NFC@ONSM-Ni(ii) nanoparticles on the in vitro proliferation of human leukemia cell line (k562) and human breast cancer cells (MDA-MB-231) were investigated. The results of MTT and Hochest assays suggested that the nanoparticles could effectively inhibit the proliferation of these cancer cells in a time- and concentration-dependent manner.

14.
RSC Adv ; 11(38): 23192-23206, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-35479769

ABSTRACT

The new recyclable cobalt three-core magnetic catalyst obtained by anchoring a Schiff base ligand sector and cellulose nanofiber slings on MNP (Fe3O4) was prepared and named as MNP@CNF@ATSM-Co(ii). Separately, MNPs and CNF have adsorbent properties of great interest. In this way, this catalyst was designed to synthesize piperidine derivatives under solvent-free conditions and alcohol oxidation reactions in EtOH as the solvent. It should be noted that this catalyst is environmentally safe and does not need an external base. This MNPs@CNF@ATSM-Co(ii) separable catalyst has been evaluated using various characterization techniques such as FT-IR, XRD, FE-SEM, EDX, EDS, ICP, TGA, DLS, HRTEM, and VSM. The catalyst was compatible with a variety of benzyl alcohols, benzaldehydes, and amines derivatives, and gave complimentary coupling products with sufficient interest for all of them. The synergistic performance of Co (trinuclear) in the catalyst was demonstrated and its different homologs such as MNPs, MNPs@CNF, MNPs@CNF@ATS-Co(ii), and MNPs@CNF@ATSM-Co(ii) were separately synthesized and applied to a model reaction, and then their catalytic activity was investigated. Also, the performance of these components for the oxidation reaction of alcohols was evaluated. The advantages of the current protocol include the use of a sustainable and safe low temperature, eco-friendly solvent no additive, and long-term stability and magnetic recyclability of the catalyst for at least five successive runs, thus following green chemistry principles. This protocol is a benign and environment-friendly method for oxidation and heterocycle synthesis. This powerful super-magnetic catalyst can use its three arms to advance the reactions, displaying its power for multi-component reactions and oxidation.

15.
RSC Adv ; 10(54): 32927-32937, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-35516478

ABSTRACT

The Fe3O4@NFC-ImSalophCu catalyst was used as a highly stable, reusable, active, green catalyst for the synthesis of 1,2,3-triazoles via one-pot three-component reaction of phenacyl bromides, sodium azide and alkynes. A Cu(ii)-Schiff base complex containing an imidazolium ionic phase was prepared and decorated on core shell Fe3O4@NFC magnetic nanoparticles (Fe3O4@NFC-ImSalophCu) and was used as an efficient catalyst. The heterogeneous catalyst was characterized by FT-IR spectroscopy, FE-SEM, TEM, XRD spectroscopy, EDX spectroscopy, VSM, and ICP spectroscopy. This catalyst shows the dual function of the metal sites and imidazolium moieties. The catalytic system mentioned above also showed excellent activity in the synthesis of bis 1,4-disubstituted 1,2,3-triazoles. Moreover, the catalyst could be recycled and reused for four cycles without any decrease in its catalytic activity.

SELECTION OF CITATIONS
SEARCH DETAIL