Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
5.
Cells ; 12(14)2023 07 14.
Article in English | MEDLINE | ID: mdl-37508519

ABSTRACT

Despite important advances in the treatment of metastatic melanoma with the development of MAPK-targeted agents and immune checkpoint inhibitors, the majority of patients either do not respond to therapies or develop acquired resistance. Furthermore, there is no effective targeted therapy currently available for BRAF wild-type melanomas (approximately 50% of cutaneous melanoma). Thus, there is a compelling need for new efficient targeted therapies. Prohibitins (PHBs) are overexpressed in several types of cancers and implicated in the regulation of signaling networks that promote cell invasion and resistance to cell apoptosis. Herein, we show that PHBs are highly expressed in melanoma and are associated with not only poor survival but also with resistance to BRAFi/MEKi. We designed and identified novel specific PHB inhibitors that can inhibit melanoma cell growth in 3D spheroid models and a large panel of representative cell lines with different molecular subtypes, including those with intrinsic and acquired resistance to MAPKi, by significantly moderating both MAPK (CRAF-ERK axis) and PI3K/AKT pathways, and inducing apoptosis through the mitochondrial pathway and up-regulation of p53. In addition, autophagy inhibition enhances the antitumor efficacy of these PHB ligands. More important, these ligands can act in synergy with MAPKi to more efficiently inhibit cell growth and overcome drug resistance in both BRAF wild-type and mutant melanoma. In conclusion, targeting PHBs represents a very promising therapeutic strategy in melanoma, regardless of mutational status.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Melanoma/pathology , Skin Neoplasms/drug therapy , Prohibitins , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins B-raf/metabolism , Ligands , Protein Kinase Inhibitors/pharmacology , Drug Resistance, Neoplasm
6.
Cancers (Basel) ; 15(8)2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37190261

ABSTRACT

Peptide receptor radionuclide therapy with 177Lu-DOTATATE improves the outcome of patients with somatostatin receptor (SSTR)-expressing neuroendocrine tumours. Nevertheless, stable disease has been the main response pattern observed, with some rare complete responses. Lu-177 exerts about two-thirds of its biological effects via the indirect effects of ionizing radiation that generate reactive oxygen species, eventually leading to oxidative damage and cell death. This provides a rationale for targeting the antioxidant defence system in combination with 177Lu-DOTATATE. In the present study, the radiosensitizing potential and the safety of depleting glutathione (GSH) levels using buthionine sulfoximine (BSO) during 177Lu-DOTATATE therapy were assessed in vitro and in vivo using a xenograft mouse model. In vitro, the combination resulted in a synergistic effect in cell lines exhibiting a BSO-mediated GSH decrease. In vivo, BSO neither influenced 177Lu-DOTATATE biodistribution nor induced liver, kidney or bone marrow toxicity. In terms of efficacy, the combination resulted in reduced tumour growth and metabolic activity. Our results showed that disturbing the cell redox balance using a GSH synthesis inhibitor increased 177Lu-DOTATATE efficacy without additional toxicity. Targeting the antioxidant defence system opens new safe treatment combination opportunities with 177Lu-DOTATATE.

7.
Front Med (Lausanne) ; 10: 1149918, 2023.
Article in English | MEDLINE | ID: mdl-37215708

ABSTRACT

Melanoma is known to be a radioresistant cancer. Melanoma radioresistance can be due to several factors such as pigmentation, antioxidant defenses and high Deoxyribonucleic acid (DNA) repair efficacy. However, irradiation induces intracellular translocation of RTKs, including cMet, which regulates response to DNA damage activating proteins and promotes DNA repair. Accordingly, we hypothesized that co-targeting DNA repair (PARP-1) and relevant activated RTKs, c-Met in particular, may radiosensitize wild-type B-Raf Proto-Oncogene, Serine/Threonine Kinase (WTBRAF) melanomas where RTKs are often upregulated. Firstly, we found that PARP-1 is highly expressed in melanoma cell lines. PARP-1 inhibition by Olaparib or its KO mediates melanoma cell sensitivity to radiotherapy (RT). Similarly, specific inhibition of c-Met by Crizotinib or its KO radiosensitizes the melanoma cell lines. Mechanistically, we show that RT causes c-Met nuclear translocation to interact with PARP-1 promoting its activity. This can be reversed by c-Met inhibition. Accordingly, RT associated with the inhibition of both c-Met and PARP-1 resulted in a synergistic effect not only on tumor growth inhibition but also on tumor regrowth control in all animals following the stop of the treatment. We thus show that combining PARP and c-Met inhibition with RT appears a promising therapeutic approach in WTBRAF melanoma.

8.
Cells ; 11(22)2022 11 18.
Article in English | MEDLINE | ID: mdl-36429091

ABSTRACT

Potential intrinsic resistance mechanisms to regorafenib were explored after short exposure (3 days) on five CRC cell lines (HCT-116, SW1116, LS-1034, SW480, Caco-2). The observation of senescence-like features led to the investigation of a drug-initiated phenotype switch. Following long-term exposure (12 months) of HCT-116 and SW480 cell lines to regorafenib, we developed resistant models to explore acquired resistance. SW480 cells demonstrated senescent-like properties, including a cell arrest in the late G2/prophase cell cycle stage and a statistically significant decrease in the expression of G1 Cyclin-Dependent Kinase inhibitors and key cell cycle regulators. A specific senescence-associated secretome was also observed. In contrast, HCT-116 treated cells presented early senescent features and developed acquired resistance triggering EMT and a more aggressive phenotype over time. The gained migration and invasion ability by long-exposed cells was associated with the increased expression level of key cellular and extracellular EMT-related factors. The PI3K/AKT pathway was a significant player in the acquired resistance of HCT-116 cells, possibly related to a PI3KCA mutation in this cell line. Our findings provide new insights into the phenotypic plasticity of CRC cells able, under treatment pressure, to acquire a stable TIS or to use an early senescence state to undergo EMT.


Subject(s)
Colorectal Neoplasms , Epithelial-Mesenchymal Transition , Humans , Epithelial-Mesenchymal Transition/genetics , Phosphatidylinositol 3-Kinases , Caco-2 Cells , Drug Resistance, Neoplasm , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism
9.
Int J Mol Sci ; 23(20)2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36293222

ABSTRACT

Radionuclide Therapy (RNT) with 177Lu-DOTATATE targeting somatostatin receptors (SSTRs) in neuroendocrine tumours (NET) has been successfully used in routine clinical practice, mainly leading to stable disease. Radiobiology holds promise for RNT improvement but is often extrapolated from external beam radiation therapy (EBRT) studies despite differences in these two radiation-based treatment modalities. In a panel of six human cancer cell lines expressing SSTRs, common radiobiological endpoints (i.e., cell survival, cell cycle, cell death, oxidative stress and DNA damage) were evaluated over time in 177Lu-DOTATATE- and EBRT-treated cells, as well as the radiosensitizing potential of poly (ADP-ribose) polymerase inhibition (PARPi). Our study showed that common radiobiological mechanisms were induced by both 177Lu-DOTATATE and EBRT, but to a different extent and/or with variable kinetics, including in the DNA damage response. A higher radiosensitizing potential of PARPi was observed for EBRT compared to 177Lu-DOTATATE. Our data reinforce the need for dedicated RNT radiobiology studies, in order to derive its maximum therapeutic benefit.


Subject(s)
Neuroendocrine Tumors , Organometallic Compounds , Humans , Receptors, Somatostatin , Ribose , Octreotide/pharmacology , Octreotide/therapeutic use , Organometallic Compounds/therapeutic use , Neuroendocrine Tumors/radiotherapy , Neuroendocrine Tumors/pathology , Radiopharmaceuticals/therapeutic use , Radiobiology , Radioisotopes/therapeutic use , Adenosine Diphosphate
10.
Pharmacol Res ; 184: 106442, 2022 10.
Article in English | MEDLINE | ID: mdl-36096424

ABSTRACT

Bufalin is an endogenous cardiotonic steroid, first discovered in toad venom but also found in the plasma of healthy humans, with anti-tumour activities in different cancer types. The current review is focused on its mechanisms of action and highlights its very large spectrum of effects both in vitro and in vivo. All leads to the conclusion that bufalin mediates its effects by affecting all the hallmarks of cancer and seems restricted to cancer cells avoiding side effects. Bufalin decreases cancer cell proliferation by acting on the cell cycle and inducing different mechanisms of cell death including apoptosis, necroptosis, autophagy and senescence. Bufalin also moderates metastasis formation by blocking migration and invasion as well as angiogenesis and by inducing a phenotype switch towards differentiation and decreasing cancer cell stemness. Regarding its various mechanisms of action in cancer cells, bufalin blocks overactivated signalling pathways and modifies cell metabolism. Moreover, bufalin gained lately a huge interest in the field of drug resistance by both reversing various drug resistance mechanisms and affecting the immune microenvironment. Together, these data support bufalin as a quite promising new anti-cancer drug candidate.


Subject(s)
Amphibian Venoms , Antineoplastic Agents , Bufanolides , Cardiac Glycosides , Neoplasms , Amphibian Venoms/pharmacology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Bufanolides/pharmacology , Bufanolides/therapeutic use , Cardiac Glycosides/pharmacology , Cell Line, Tumor , Cell Proliferation , Humans , Neoplasms/drug therapy , Tumor Microenvironment
11.
Eur J Med Chem ; 242: 114635, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35988448

ABSTRACT

Fluorizoline is a cytotoxic trifluorothiazoline that targets the scaffold proteins prohibitins-1 and -2 (PHB1/2) to inhibit the kinase C-RAF and promote the expression of the cyclin-dependent kinase inhibitor p21 to induce cancer cell death. In melanocytes, fluorizoline also induces the synthesis of melanin. Herein we report the first structural requirement of fluorizoline analogues for these activities. We identified in particular some compounds that display enhanced anti-C-RAF and anti-MEK activities, and a higher cytotoxicity in HeLa cells compared to fluorizoline. These results provide a foundation for further optimization of PHB ligands for the treatment of cancers. We also discovered an analogue of fluorizoline that displays pharmacological effects opposed to those of fluorizoline and that can be used as a chemical tool to explore PHB signaling in cancers and other diseases.


Subject(s)
Apoptosis , Prohibitins , Cyclin-Dependent Kinase Inhibitor p21/metabolism , HeLa Cells , Humans , Ligands , Melanins/metabolism , Protein Serine-Threonine Kinases , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-raf/metabolism , Proto-Oncogene Proteins c-raf/pharmacology , Repressor Proteins , Transcription Factors/metabolism
12.
Biomedicines ; 10(7)2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35884845

ABSTRACT

The central nervous system is the location of metastases in more than 40% of patients with lung cancer, breast cancer and melanoma. These metastases are associated with one of the poorest prognoses in advanced cancer patients, mainly due to the lack of effective treatments. In this review, we explore the involvement of cytokines, including interleukins and chemokines, during the development of brain and leptomeningeal metastases from the epithelial-to-mesenchymal cell transition and blood-brain barrier extravasation to the interaction between cancer cells and cells from the brain microenvironment, including astrocytes and microglia. Furthermore, the role of the gut-brain axis on cytokine release during this process will also be addressed.

13.
Cells ; 11(7)2022 03 29.
Article in English | MEDLINE | ID: mdl-35406721

ABSTRACT

Melanoma cells are notorious for their high plasticity and ability to switch back and forth between various melanoma cell states, enabling the adaptation to sub-optimal conditions and therapeutics. This phenotypic plasticity, which has gained more attention in cancer research, is proposed as a new paradigm for melanoma progression. In this review, we provide a detailed and deep comprehensive recapitulation of the complex spectrum of phenotype switching in melanoma, the key regulator factors, the various and new melanoma states, and corresponding signatures. We also present an extensive description of the role of epigenetic modifications (chromatin remodeling, methylation, and activities of long non-coding RNAs/miRNAs) and metabolic rewiring in the dynamic switch. Furthermore, we elucidate the main role of the crosstalk between the tumor microenvironment (TME) and oxidative stress in the regulation of the phenotype switching. Finally, we discuss in detail several rational therapeutic approaches, such as exploiting phenotype-specific and metabolic vulnerabilities and targeting components and signals of the TME, to improve the response of melanoma patients to treatments.


Subject(s)
Melanoma , MicroRNAs , Epigenesis, Genetic , Humans , Melanoma/pathology , MicroRNAs/genetics , Phenotype , Tumor Microenvironment
14.
Curr Opin Oncol ; 34(2): 131-138, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35013044

ABSTRACT

PURPOSE OF REVIEW: Radiotherapy has been proven to be useful but insufficient in melanoma management due to the intrinsic radioresistance of melanoma cells. Elucidation of the molecular mechanisms and pathways related to resistance/sensitivity to radiotherapy in melanoma is of paramount importance. In this review, we will summarize and discuss the recent 'discoveries' and advances in radiosensitivity determinants in melanoma. RECENT FINDINGS: The different levels of radiosensitivity among the various melanoma tumors could be attributed to the DNA damage signaling and repair proteins, tumor microenvironment, hypoxia, cell metabolism, glutathione and redox balance, protein kinase signaling pathways as well as pigmentation and melanin content. SUMMARY: It is therapeutically important to elucidate the factors involved in radiation resistance/sensitivity of melanoma. More importantly, improving radiosensitivity may 'widen the clinical utility' in melanoma of this important therapeutic modality.


Subject(s)
Melanoma , Radiation Tolerance , DNA Damage , Humans , Melanoma/drug therapy , Radiation Tolerance/physiology , Tumor Microenvironment
15.
Front Oncol ; 11: 780654, 2021.
Article in English | MEDLINE | ID: mdl-34869032

ABSTRACT

The use of patient-derived primary cell cultures in cancer preclinical assays, including drug screens and genotoxic studies, has increased in recent years. However, their translational value is constrained by several limitations, including variability that can be caused by the culture conditions. Here, we show that the medium composition commonly used to propagate primary melanoma cultures has limited their representability of their tumor of origin and their cellular plasticity, and modified their sensitivity to therapy. Indeed, we established and compared cultures from different melanoma patients propagated in parallel in low-tyrosine (Ham's F10) or in high-tyrosine (Ham's F10 supplemented with tyrosine or RPMI1640 or DMEM) media. Tyrosine is the precursor of melanin biosynthesis, a process particularly active in differentiated melanocytes and melanoma cells. Unexpectedly, we found that the high tyrosine concentrations promoted an early phenotypic drift towards either a mesenchymal-like or senescence-like phenotype, and prevented the establishment of cultures of melanoma cells harboring differentiated features, which we show are frequently present in human clinical biopsies. Moreover, the invasive phenotype emerging in these culture conditions appeared irreversible and, as expected, associated with intrinsic resistance to MAPKi. In sharp contrast, differentiated melanoma cell cultures retained their phenotypes upon propagation in low-tyrosine medium, and importantly their phenotypic plasticity, a key hallmark of melanoma cells. Altogether, our findings underline the importance of culturing melanoma cells in low-tyrosine-containing medium in order to preserve their phenotypic identity of origin and cellular plasticity.

16.
Front Oncol ; 11: 784947, 2021.
Article in English | MEDLINE | ID: mdl-34869042

ABSTRACT

Immunotherapy with checkpoint inhibitors opened new horizons in cancer treatment. Clinical trials for novel immunotherapies or unexplored combination regimens either need years of development or are simply impossible to perform like is the case in cancer patients with limited life expectancy. Thus, the need for preclinical models that rapidly and safely allow for a better understanding of underlying mechanisms, drug kinetics and toxicity leading to the selection of the best regimen to be translated into the clinic, is of high importance. Humanized mice that can bear both human immune system and human tumors, are increasingly used in recent preclinical immunotherapy studies and represent a remarkably unprecedented tool in this field. In this review, we describe, summarize, and discuss the recent advances of humanized mouse models used for cancer immunotherapy research and the challenges faced during their establishment. We also highlight the lack of preclinical studies using this model for radiotherapy-based research and argue that it can be a great asset to understand and answer many open questions around radiation therapy such as its presumed associated "abscopal effect".

17.
Nucl Med Biol ; 96-97: 68-79, 2021.
Article in English | MEDLINE | ID: mdl-33839677

ABSTRACT

INTRODUCTION: [177Lu]Lu-DOTATATE is an effective systemic targeted radionuclide therapy for somatostatin receptor (SSTR) positive metastatic or inoperable neuroendocrine tumours (NET). However, for a given injected activity, tumour responses are variable. Our aim was to investigate whether SSTR expression/functionality and known characteristics of intrinsic radiosensitivity, namely proliferation rate, glucose metabolism, cell cycle phase, DNA repair and antioxidant defences were predictors of sensitivity to [177Lu]Lu-DOTATATE in SSTR expressing human cancer cell lines. METHODS: In six human cancer cell lines and under basal condition, SSTR expression was assessed by qRT-PCR and immunocytochemistry. Its functionality was evaluated by binding/uptake assays with [68Ga]Ga- and [177Lu]Lu-DOTATATE. The radiosensitivity parameters were evaluated as follows: proliferation rate (cell counting), glucose metabolism ([18F]FDG uptake), antioxidant defences (qRT-PCR, colorimetric assay, flow cytometry), DNA repair (qRT-PCR) and cell cycle (flow cytometry). Effect of [177Lu]Lu-DOTATATE on cell viability was assessed 3, 7 and 10 days after 4 h incubation with [177Lu]Lu-DOTATATE using crystal violet. RESULTS: Based on cell survival at day 10, cell lines were classified into two groups of sensitivity to [177Lu]Lu-DOTATATE. One group with <20% of survival decrease (-14 to -1%) and one group with >20% of survival decrease (-22 to -33%) compared to the untreated control cell lines. The latter had significantly lower total antioxidant capacity, glutathione (GSH) levels and glucose metabolism (p < 0.05) compared to the first group. SSTR (p = 0.64), proliferation rate (p = 0.74), cell cycle phase (p = 0.55), DNA repair (p > 0.22), combined catalase and GSH peroxidase expression (p = 0.42) and superoxide dismutase (SOD) activity (p = 0.41) were not significantly different between the two groups. CONCLUSION: Antioxidant defences may be major determinants in [177Lu]Lu-DOTATATE radiosensitivity.


Subject(s)
Neuroendocrine Tumors , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography , Radionuclide Imaging , Humans , Receptors, Somatostatin
18.
Cancers (Basel) ; 13(7)2021 Apr 02.
Article in English | MEDLINE | ID: mdl-33918490

ABSTRACT

MAPK (mitogen activated protein kinase) and PI3K/AKT (Phosphatidylinositol-3-Kinase and Protein Kinase B) pathways play a key role in melanoma progression and metastasis that are regulated by receptor tyrosine kinases (RTKs). Although RTKs are mutated in a small percentage of melanomas, several receptors were found up regulated/altered in various stages of melanoma initiation, progression, or metastasis. Targeting RTKs remains a significant challenge in melanoma, due to their variable expression across different melanoma stages of progression and among melanoma subtypes that consequently affect response to treatment and disease progression. In this review, we discuss in details the activation mechanism of several key RTKs: type III: c-KIT (mast/stem cell growth factor receptor); type I: EGFR (Epidermal growth factor receptor); type VIII: HGFR (hepatocyte growth factor receptor); type V: VEGFR (Vascular endothelial growth factor), structure variants, the function of their structural domains, and their alteration and its association with melanoma initiation and progression. Furthermore, several RTK inhibitors targeting the same receptor were tested alone or in combination with other therapies, yielding variable responses among different melanoma groups. Here, we classified RTK inhibitors by families and summarized all tested drugs in melanoma indicating the rationale behind the use of these drugs in each melanoma subgroups from preclinical studies to clinical trials with a specific focus on their purpose of treatment, resulted effect, and outcomes.

19.
J Clin Invest ; 131(8)2021 04 15.
Article in English | MEDLINE | ID: mdl-33690225

ABSTRACT

Melanomas commonly undergo a phenotype switch, from a proliferative to an invasive state. Such tumor cell plasticity contributes to immunotherapy resistance; however, the mechanisms are not completely understood and thus are therapeutically unexploited. Using melanoma mouse models, we demonstrated that blocking the MNK1/2-eIF4E axis inhibited melanoma phenotype switching and sensitized melanoma to anti-PD-1 immunotherapy. We showed that phospho-eIF4E-deficient murine melanomas expressed high levels of melanocytic antigens, with similar results verified in patient melanomas. Mechanistically, we identified phospho-eIF4E-mediated translational control of NGFR, a critical effector of phenotype switching. Genetic ablation of phospho-eIF4E reprogrammed the immunosuppressive microenvironment, exemplified by lowered production of inflammatory factors, decreased PD-L1 expression on dendritic cells and myeloid-derived suppressor cells, and increased CD8+ T cell infiltrates. Finally, dual blockade of the MNK1/2-eIF4E axis and the PD-1/PD-L1 immune checkpoint demonstrated efficacy in multiple melanoma models regardless of their genomic classification. An increase in the presence of intratumoral stem-like TCF1+PD-1+CD8+ T cells, a characteristic essential for durable antitumor immunity, was detected in mice given a MNK1/2 inhibitor and anti-PD-1 therapy. Using MNK1/2 inhibitors to repress phospho-eIF4E thus offers a strategy to inhibit melanoma plasticity and improve response to anti-PD-1 immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Eukaryotic Initiation Factor-4E/immunology , Immunity, Cellular , MAP Kinase Signaling System/immunology , Melanoma, Experimental/immunology , Protein Serine-Threonine Kinases/immunology , Animals , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , Cell Line, Tumor , Eukaryotic Initiation Factor-4E/genetics , Immunotherapy , MAP Kinase Signaling System/genetics , Melanoma, Experimental/genetics , Melanoma, Experimental/therapy , Mice , Mice, Transgenic , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/immunology , Protein Serine-Threonine Kinases/genetics , Receptor, Nerve Growth Factor/genetics , Receptor, Nerve Growth Factor/immunology
20.
Mol Cancer Res ; 19(7): 1221-1233, 2021 07.
Article in English | MEDLINE | ID: mdl-33741716

ABSTRACT

Amplification or activating mutations of c-Kit are a frequent oncogenic alteration, which occurs commonly in acral and mucosal melanoma. Among c-Kit inhibitors, dasatinib is the most active due to its ability to bind both active and inactive conformations of the receptor. However, its use as a single agent in melanoma showed limited clinical benefit. We first found that sensitivity to dasatinib is restricted to melanoma cell lines harboring c-Kit alteration but, unexpectedly, we observed lower effect at higher concentrations that can readily be found in patient blood. We then investigated relevant pathway alterations and found complete inhibition of MAPK and PI3K/AKT pathways but an increase in MITF and its downstream target Bcl-2 through CRTC3 pathway, which turn on the CREB regulated transcription of MITF. More importantly, dasatinib upregulates MITF and Bcl-2 through SIK2 inhibition revealed by CRTC3 reduced phosphorylation, CREB transcription activation of MITF, MITF transcription activation of Bcl-2 as well as pigmentation. Furthermore, overexpression of MITF renders melanoma cells resistant to all dasatinib concentrations. Selective Bcl-2 inhibition by ABT-199 or Bcl-2 knockout restores the sensitivity of melanoma cells to dasatinib, validating the involvement of MITF and Bcl-2 axis in the resistance of melanoma to dasatinib. In conclusion, we showed for the first time that dasatinib in melanoma stimulates its proper mechanism of resistance, independently of MAPK and PI3K/AKT pathways reactivation commonly associated to secondary c-Kit mutations, but through CRTC3/MITF/Bcl-2 pathway activation at clinically relevant doses which may explain the weak clinical benefit of dasatinib in patients with melanoma. IMPLICATIONS: Dasatinib stimulates its proper mechanism of resistance through CRTC3/MITF/Bcl-2 pathway, which may explain its modest clinical efficiency in patients with melanoma.


Subject(s)
Dasatinib/pharmacology , Drug Resistance, Neoplasm/drug effects , Melanoma/metabolism , Proteins/metabolism , Proto-Oncogene Proteins c-kit/metabolism , Signal Transduction/drug effects , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Drug Resistance, Neoplasm/genetics , Gene Amplification , Gene Expression Regulation, Neoplastic/drug effects , Humans , Melanoma/genetics , Melanoma/pathology , Microphthalmia-Associated Transcription Factor/genetics , Microphthalmia-Associated Transcription Factor/metabolism , Mutation , Proteins/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-kit/genetics , Signal Transduction/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...