Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 25(29): 19540-19552, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37395083

ABSTRACT

The production of ammonia for agricultural and energy demands has accelerated research for more environmentally-friendly synthesis options, particularly the electrocatalytic reduction of molecular nitrogen (nitrogen reduction reaction, NRR). Catalyst activity for NRR, and selectivity for NRR over the competitive hydrogen evolution reaction (HER), are critical issues for which fundamental knowledge remains scarce. Herein, we present results regarding the NRR activity and selectivity of sputter-deposited titanium nitride and titanium oxynitride films for NRR and HER. Electrochemical, fluorescence and UV absorption measurements show that titanium oxynitride exhibits NRR activity under acidic conditions (pH 1.6, 3.2) but is inactive at pH 7. Ti oxynitride is HER inactive at all these pH values. In contrast, TiN - with no oxygen content upon deposition - is both NRR and HER inactive at all the above pH values. This difference in oxynitride/nitride reactivity is observed despite the fact that both films exhibit very similar surface chemical compositions - predominantly TiIV oxide - upon exposure to ambient, as determined by ex situ X-ray photoelectron spectroscopy (XPS). XPS, with in situ transfer between electrochemical and UHV environments, however, demonstrates that this TiIV oxide top layer is unstable under acidic conditions, but stable at pH 7, explaining the inactivity of titanium oxynitride at this pH. The inactivity of TiN at acidic and neutral pH is explained by DFT-based calculations showing that N2 adsorption at N-ligated Ti centers is energetically significantly less favorable than at O-ligated centers. These calculations also predict that N2 will not bind to TiIV centers due to a lack of π-backbonding. Ex situ XPS measurements and electrochemical probe measurements at pH 3.2 demonstrate that Ti oxynitride films undergo gradual dissolution under NRR conditions. The present results demonstrate that the long-term catalyst stability and maintenance of metal cations in intermediate oxidation states for pi-backbonding are critical issues worthy of further examination.

2.
J Phys Condens Matter ; 35(33)2023 May 22.
Article in English | MEDLINE | ID: mdl-37168004

ABSTRACT

The electrocatalytic reduction of molecular nitrogen to ammonia-the nitrogen reduction reaction (NRR)-is of broad interest as an environmentally- and energy-friendly alternative to the Haber-Bosch process for agricultural and emerging energy applications. Herein, we review our recent findings from collaborative electrochemistry/surface science/theoretical studies that counter several commonly held assumptions regarding transition metal oxynitrides and oxides as NRR catalysts. Specifically, we find that for the vanadium oxide, vanadium oxynitride, and cobalt oxynitride systems, (a) there is no Mars-van Krevelen mechanism and that the reduction of lattice nitrogen and N2to NH3occurs by parallel reaction mechanisms at O-ligated metal sites without incorporation of N into the oxide lattice; and (b) that NRR and the hydrogen evolution reaction do occur in concert under the conditions studied for Co oxynitride, but not for V oxynitride. Additionally, these results highlight the importance of both O-ligation of the V or Co center for metal-binding of dinitrogen, and the importance of N in stabilizing the transition metal cation in an intermediate oxidation state, for effective N≡N bond activation. This review also highlights the importance and limitations ofex situandin situphotoemission-involving controlled transfer between ultra-high vacuum and electrochemistry environments, and ofoperandonear ambient pressure photoemission coupled within situstudies, in elucidating the complex chemistry relevant to the electrolyte/solid interface.

3.
Chemistry ; 28(27): e202200224, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35298095

ABSTRACT

Cooperative enamine-metal Lewis acid catalysis has emerged as a powerful tool to construct carbon-carbon and carbon-heteroatom bond forming reactions. A concise synthetic method for asymmetric synthesis of chromans from cyclohexanones and salicylaldehydes has been developed to afford tricyclic chromans containing three consecutive stereogenic centers in good yields (up to 87 %) and stereoselectivity (up to 99 % ee and 11 : 1 : 1 dr). This difficult organic transformation was achieved through bifunctional enamine-metal Lewis acid catalysis. It is believed that the strong activation of the salicylaldehydes through chelating to the metal Lewis acid and the bifunctional nature of the catalyst accounts for the high yields and enantioselectivity of the reaction. The absolute configurations of the chroman products were established through X-ray crystallography. DFT calculations were conducted to understand the mechanism and stereoselectivity of this reaction.


Subject(s)
Chromans , Lewis Acids , Carbon , Catalysis , Lewis Acids/chemistry , Metals , Stereoisomerism
4.
ACS Appl Mater Interfaces ; 14(1): 531-542, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-34964618

ABSTRACT

Vanadium oxynitride and other earth-abundant oxynitrides are of growing interest for the electrocatalytic reduction of nitrogen to NH3. A major unresolved issue, however, concerns the roles of lattice N and lattice O in this process. Electrochemistry and photoemission data reported here demonstrate that both lattice N and dissolved N2 are reduced to NH3 by cathodic polarization of vanadium oxynitride films at pH 7. These data also show that ammonia production from lattice N occurs in the presence or absence of N2 and involves the formation of V≡N: intermediates or similar unsaturated VN surface states on a thin vanadium oxide overlayer. In contrast, N2 reduction proceeds in the presence or absence of lattice N and without N incorporation into a vanadium oxide lattice. Thus, both lattice N and N2 reduction mechanisms involve oxide-supported V surface sites ([V]O) in preference to N-supported sites ([V]N). This result is supported by density functional theory-based calculations showing that the formation of V≡N:, V-N═N-H, and a few other plausible reaction intermediates is consistently energetically favored at [V]O rather than at [V]N surface sites. Similar effects are predicted for the oxynitrides of other oxophilic metals, such as Ti.

SELECTION OF CITATIONS
SEARCH DETAIL
...