Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Renal Physiol ; 326(6): F942-F956, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38634135

ABSTRACT

T cells mediate organ injury and repair. A proportion of unconventional kidney T cells called double-negative (DN) T cells (TCR+ CD4- CD8-), with anti-inflammatory properties, were previously demonstrated to protect from early injury in moderate experimental acute kidney injury (AKI). However, their role in repair after AKI has not been studied. We hypothesized that DN T cells mediate repair after severe AKI. C57B6 mice underwent severe (40 min) unilateral ischemia-reperfusion injury (IRI). Kidney DN T cells were studied by flow cytometry and compared with gold-standard anti-inflammatory CD4+ regulatory T cells (Tregs). In vitro effects of DN T cells and Tregs on renal tubular epithelial cell (RTEC) repair after injury were quantified with live-cell analysis. DN T cells, Tregs, CD4, or vehicle were adoptively transferred after severe AKI. Glomerular filtration rate (GFR) was measured using fluorescein isothiocyanate (FITC)-sinistrin. Fibrosis was assessed with Masson's trichrome staining. Profibrotic genes were measured with qRT-PCR. Percentages and the numbers of DN T cells substantially decreased during repair phase after severe AKI, as well as their activation and proliferation. Both DN T cells and Tregs accelerated RTEC cell repair in vitro. Post-AKI transfer of DN T cells reduced kidney fibrosis and improved GFR, as did Treg transfer. DN T cell transfer lowered transforming growth factor (TGF)ß1 and α-smooth muscle actin (αSMA) expression. DN T cells reduced effector-memory CD4+ T cells and IL-17 expression. DN T cells undergo quantitative and phenotypical changes after severe AKI, accelerate RTEC repair in vitro as well as improve GFR and renal fibrosis in vivo. DN T cells have potential as immunotherapy to accelerate repair after AKI.NEW & NOTEWORTHY Double-negative (DN) T cells (CD4- CD8-) are unconventional kidney T cells with regulatory abilities. Their role in repair from acute kidney injury (AKI) is unknown. Kidney DN T cell population decreased during repair after ischemic AKI, in contrast to regulatory T cells (Tregs) which increased. DN T cell administration accelerated tubular repair in vitro, while after severe in vivo ischemic injury reduced kidney fibrosis and increased glomerular filtration rate (GFR). DN T cell infusion is a potential therapeutic agent to improve outcome from severe AKI.


Subject(s)
Acute Kidney Injury , Glomerular Filtration Rate , Mice, Inbred C57BL , Reperfusion Injury , T-Lymphocytes, Regulatory , Animals , Acute Kidney Injury/immunology , Acute Kidney Injury/pathology , Acute Kidney Injury/metabolism , Acute Kidney Injury/physiopathology , Reperfusion Injury/immunology , Reperfusion Injury/pathology , Reperfusion Injury/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Male , Disease Models, Animal , Fibrosis , Epithelial Cells/metabolism , Epithelial Cells/pathology , Adoptive Transfer , Mice , Kidney/pathology , Kidney/immunology , Kidney/metabolism , Phenotype , Kidney Tubules/pathology , Kidney Tubules/metabolism , Regeneration , Cells, Cultured
2.
Sci Rep ; 14(1): 4469, 2024 02 23.
Article in English | MEDLINE | ID: mdl-38396136

ABSTRACT

Multiple types of T cells have been described and assigned pathophysiologic functions in the kidneys. However, the existence and functions of TCR+CD4+CD8+ (double positive; DP) T cells are understudied in normal and diseased murine and human kidneys. We studied kidney DPT cells in mice at baseline and after ischemia reperfusion (IR) and cisplatin injury. Additionally, effects of viral infection and gut microbiota were studied. Human kidneys from patients with renal cell carcinoma were evaluated. Our results demonstrate that DPT cells expressing CD4 and CD8 co-receptors constitute a minor T cell population in mouse kidneys. DPT cells had significant Ki67 and PD1 expression, effector/central memory phenotype, proinflammatory cytokine (IFNγ, TNFα and IL-17) and metabolic marker (GLUT1, HKII, CPT1a and pS6) expression at baseline. IR, cisplatin and viral infection elevated DPT cell proportions, and induced distinct functional and metabolic changes. scRNA-seq analysis showed increased expression of Klf2 and Ccr7 and enrichment of TNFα and oxidative phosphorylation related genes in DPT cells. DPT cells constituted a minor population in both normal and cancer portion of human kidneys. In conclusion, DPT cells constitute a small population of mouse and human kidney T cells with distinct inflammatory and metabolic profile at baseline and following kidney injury.


Subject(s)
T-Lymphocytes , Virus Diseases , Animals , Mice , Humans , T-Lymphocytes/metabolism , Tumor Necrosis Factor-alpha/metabolism , Cisplatin/pharmacology , Kidney/metabolism , Ischemia/pathology , Virus Diseases/pathology
3.
Sci Rep ; 13(1): 20888, 2023 11 28.
Article in English | MEDLINE | ID: mdl-38017015

ABSTRACT

T cells are important in the pathogenesis of acute kidney injury (AKI), and TCR+CD4-CD8- (double negative-DN) are T cells that have regulatory properties. However, there is limited information on DN T cells compared to traditional CD4+ and CD8+ cells. To elucidate the molecular signature and spatial dynamics of DN T cells during AKI, we performed single-cell RNA sequencing (scRNA-seq) on sorted murine DN, CD4+, and CD8+ cells combined with spatial transcriptomic profiling of normal and post AKI mouse kidneys. scRNA-seq revealed distinct transcriptional profiles for DN, CD4+, and CD8+ T cells of mouse kidneys with enrichment of Kcnq5, Klrb1c, Fcer1g, and Klre1 expression in DN T cells compared to CD4+ and CD8+ T cells in normal kidney tissue. We validated the expression of these four genes in mouse kidney DN, CD4+ and CD8+ T cells using RT-PCR and Kcnq5, Klrb1, and Fcer1g genes with the NIH human kidney precision medicine project (KPMP). Spatial transcriptomics in normal and ischemic mouse kidney tissue showed a localized cluster of T cells in the outer medulla expressing DN T cell genes including Fcer1g. These results provide a template for future studies in DN T as well as CD4+ and CD8+ cells in normal and diseased kidneys.


Subject(s)
Acute Kidney Injury , CD8-Positive T-Lymphocytes , Humans , Animals , Mice , CD8-Positive T-Lymphocytes/metabolism , Transcriptome , CD8 Antigens/metabolism , CD4 Antigens/metabolism , Kidney/metabolism , Acute Kidney Injury/pathology , Receptors, Antigen, T-Cell, alpha-beta/metabolism
4.
JCI Insight ; 8(12)2023 06 22.
Article in English | MEDLINE | ID: mdl-37166984

ABSTRACT

T cells play an important role in acute kidney injury (AKI). Metabolic programming of T cells regulates their function, is a rapidly emerging field, and is unknown in AKI. We induced ischemic AKI in C57BL/6J mice and collected kidneys and spleens at multiple time points. T cells were isolated and analyzed by an immune-metabolic assay. Unbiased machine learning analyses identified a distinct T cell subset with reduced voltage-dependent anion channel 1 and mTOR expression in post-AKI kidneys. Ischemic kidneys showed higher expression of trimethylation of histone H3 lysine 27 and glutaminase. Splenic T cells from post-AKI mice had higher expression of glucose transporter 1, hexokinase II, and carnitine palmitoyltransferase 1a. Human nonischemic and ischemic kidney tissue displayed similar findings to mouse kidneys. Given a convergent role for glutamine in T cell metabolic pathways and the availability of a relatively safe glutamine antagonist, JHU083, effects on AKI were evaluated. JHU083 attenuated renal injury and reduced T cell activation and proliferation in ischemic and nephrotoxic AKI, whereas T cell-deficient mice were not protected by glutamine blockade. In vitro hypoxia demonstrated upregulation of glycolysis-related enzymes. T cells undergo metabolic reprogramming during AKI, and reconstitution of metabolism by targeting T cell glutamine pathway could be a promising novel therapeutic approach.


Subject(s)
Acute Kidney Injury , Glutamine , Humans , Mice , Animals , Mice, Inbred C57BL , Acute Kidney Injury/metabolism , T-Lymphocyte Subsets/metabolism , Ischemia/drug therapy
5.
Kidney Int ; 104(3): 470-491, 2023 09.
Article in English | MEDLINE | ID: mdl-37011727

ABSTRACT

Targeting gut microbiota has shown promise to prevent experimental acute kidney injury (AKI). However, this has not been studied in relation to accelerating recovery and preventing fibrosis. Here, we found that modifying gut microbiota with an antibiotic administered after severe ischemic kidney injury in mice, particularly with amoxicillin, accelerated recovery. These indices of recovery included increased glomerular filtration rate, diminution of kidney fibrosis, and reduction of kidney profibrotic gene expression. Amoxicillin was found to increase stool Alistipes, Odoribacter and Stomatobaculum species while significantly depleting Holdemanella and Anaeroplasma. Specifically, amoxicillin treatment reduced kidney CD4+T cells, interleukin (IL)-17 +CD4+T cells, and tumor necrosis factor-α double negative T cells while it increased CD8+T cells and PD1+CD8+T cells. Amoxicillin also increased gut lamina propria CD4+T cells while decreasing CD8+T and IL-17+CD4+T cells. Amoxicillin did not accelerate repair in germ-free or CD8-deficient mice, demonstrating microbiome and CD8+T lymphocytes dependence for amoxicillin protective effects. However, amoxicillin remained effective in CD4-deficient mice. Fecal microbiota transplantation from amoxicillin-treated to germ-free mice reduced kidney fibrosis and increased Foxp3+CD8+T cells. Amoxicillin pre-treatment protected mice against kidney bilateral ischemia reperfusion injury but not cisplatin-induced AKI. Thus, modification of gut bacteria with amoxicillin after severe ischemic AKI is a promising novel therapeutic approach to accelerate recovery of kidney function and mitigate the progression of AKI to chronic kidney disease.


Subject(s)
Acute Kidney Injury , Microbiota , Reperfusion Injury , Animals , Mice , Acute Kidney Injury/chemically induced , Kidney/pathology , Reperfusion Injury/pathology , Ischemia , Fibrosis , Amoxicillin/adverse effects
6.
Antioxid Redox Signal ; 38(13-15): 959-973, 2023 05.
Article in English | MEDLINE | ID: mdl-36734409

ABSTRACT

Aims: T cells play pathophysiologic roles in kidney ischemia-reperfusion injury (IRI), and the nuclear factor erythroid 2-related factor 2/kelch-like ECH-associated protein 1 (Nrf2/Keap1) pathway regulates T cell responses. We hypothesized that clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)-mediated Keap1-knockout (KO) augments Nrf2 antioxidant potential of CD4+ T cells, and that Keap1-KO CD4+ T cell immunotherapy protects from kidney IRI. Results: CD4+ T cell Keap1-KO resulted in significant increase of Nrf2 target genes NAD(P)H quinone dehydrogenase 1, heme oxygenase 1, glutamate-cysteine ligase catalytic subunit, and glutamate-cysteine ligase modifier subunit. Keap1-KO cells displayed no signs of exhaustion, and had significantly lower levels of interleukin 2 (IL2) and IL6 in normoxic conditions, but increased interferon gamma in hypoxic conditions in vitro. In vivo, adoptive transfer of Keap1-KO CD4+ T cells before IRI improved kidney function in T cell-deficient nu/nu mice compared with mice receiving unedited control CD4+ T cells. Keap1-KO CD4+ T cells isolated from recipient kidneys 24 h post IR were less activated compared with unedited CD4+ T cells, isolated from control kidneys. Innovation: Editing Nrf2/Keap1 pathway in murine T cells using CRISPR/Cas9 is an innovative and promising immunotherapy approach for kidney IRI and possibly other solid organ IRI. Conclusion: CRISPR/Cas9-mediated Keap1-KO increased Nrf2-regulated antioxidant gene expression in murine CD4+ T cells, modified responses to in vitro hypoxia and in vivo kidney IRI. Gene editing targeting the Nrf2/Keap1 pathway in T cells is a promising approach for immune-mediated kidney diseases.


Subject(s)
Antioxidants , Reperfusion Injury , Mice , Animals , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Antioxidants/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , CRISPR-Cas Systems , Glutamate-Cysteine Ligase/genetics , Glutamate-Cysteine Ligase/metabolism , Gene Editing , Kidney/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/therapy , Reperfusion Injury/metabolism , Oxidative Stress
7.
J Am Soc Nephrol ; 34(5): 755-771, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36747315

ABSTRACT

SIGNIFICANCE STATEMENT: T cells mediate pathogenic and reparative processes during AKI, but the exact mechanisms regulating kidney T cell functions are unclear. This study identified upregulation of the novel immune checkpoint molecule, TIGIT, on mouse and human kidney T cells after AKI. TIGIT-expressing kidney T cells produced proinflammatory cytokines and had effector (EM) and central memory (CM) phenotypes. TIGIT-deficient mice had protection from both ischemic and nephrotoxic AKI. Single-cell RNA sequencing led to the discovery of possible downstream targets of TIGIT. TIGIT mediates AKI pathophysiology, is a promising novel target for AKI therapy, and is being increasingly studied in human cancer therapy trials. BACKGROUND: T cells play pathogenic and reparative roles during AKI. However, mechanisms regulating T cell responses are relatively unknown. We investigated the roles of the novel immune checkpoint molecule T cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif domains (TIGIT) in kidney T cells and AKI outcomes. METHODS: TIGIT expression and functional effects were evaluated in mouse kidney T cells using RNA sequencing (RNA-Seq) and flow cytometry. TIGIT effect on AKI outcomes was studied with TIGIT knockout (TIGIT-KO) mice in ischemia reperfusion (IR) and cisplatin AKI models. Human kidney T cells from nephrectomy samples and single cell RNA sequencing (scRNA-Seq) data from the Kidney Precision Medicine Project were used to assess TIGIT's role in humans. RESULTS: RNA-Seq and flow cytometry analysis of mouse kidney CD4+ T cells revealed increased expression of TIGIT after IR injury. Ischemic injury also increased TIGIT expression in human kidney T cells, and TIGIT expression was restricted to T/natural killer cell subsets in patients with AKI. TIGIT-expressing kidney T cells in wild type (WT) mice had an effector/central memory phenotype and proinflammatory profile at baseline and post-IR. Kidney regulatory T cells were predominantly TIGIT+ and significantly reduced post-IR. TIGIT-KO mice had significantly reduced kidney injury after IR and nephrotoxic injury compared with WT mice. scRNA-Seq analysis showed enrichment of genes related to oxidative phosphorylation and mTORC1 signaling in Th17 cells from TIGIT-KO mice. CONCLUSIONS: TIGIT expression increases in mouse and human kidney T cells during AKI, worsens AKI outcomes, and is a novel therapeutic target for AKI.


Subject(s)
Acute Kidney Injury , Immune Checkpoint Proteins , Humans , Mice , Animals , CD4-Positive T-Lymphocytes , Kidney/pathology , Mice, Knockout , Ischemia/pathology , Acute Kidney Injury/pathology , Receptors, Immunologic/genetics
9.
Nephron ; 144(12): 662-664, 2020.
Article in English | MEDLINE | ID: mdl-32721962

ABSTRACT

Acute kidney injury (AKI) is a common and serious syndrome that involves multiple pathophysiologic mechanisms. Recent studies have demonstrated that dysbiosis of the gut microbiota mediates experimental AKI. The precise microbial populations involved and the underlying mechanisms are currently being explored. In this mini-review based on the NIH AKI O'Brien Center symposium of February 2020, we discuss data on gut microbiota in AKI with a focus on the immune system and short-chain fatty acids as mediators of microbiome-kidney crosstalk.


Subject(s)
Acute Kidney Injury/immunology , Acute Kidney Injury/microbiology , Fatty Acids, Volatile/metabolism , Gastrointestinal Microbiome , Acute Kidney Injury/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...