Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bull Math Biol ; 84(6): 66, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35551507

ABSTRACT

Testing individuals for pathogens can affect the spread of epidemics. Understanding how individual-level processes of sampling and reporting test results can affect community- or population-level spread is a dynamical modeling question. The effect of testing processes on epidemic dynamics depends on factors underlying implementation, particularly testing intensity and on whom testing is focused. Here, we use a simple model to explore how the individual-level effects of testing might directly impact population-level spread. Our model development was motivated by the COVID-19 epidemic, but has generic epidemiological and testing structures. To the classic SIR framework we have added a per capita testing intensity, and compartment-specific testing weights, which can be adjusted to reflect different testing emphases-surveillance, diagnosis, or control. We derive an analytic expression for the relative reduction in the basic reproductive number due to testing, test-reporting and related isolation behaviours. Intensive testing and fast test reporting are expected to be beneficial at the community level because they can provide a rapid assessment of the situation, identify hot spots, and may enable rapid contact-tracing. Direct effects of fast testing at the individual level are less clear, and may depend on how individuals' behaviour is affected by testing information. Our simple model shows that under some circumstances both increased testing intensity and faster test reporting can reduce the effectiveness of control, and allows us to explore the conditions under which this occurs. Conversely, we find that focusing testing on infected individuals always acts to increase effectiveness of control.


Subject(s)
COVID-19 , Epidemics , COVID-19/diagnosis , COVID-19/epidemiology , Epidemics/prevention & control , Humans , Mathematical Concepts , Models, Biological , SARS-CoV-2
2.
PLoS One ; 12(9): e0185671, 2017.
Article in English | MEDLINE | ID: mdl-28961269

ABSTRACT

Dispersal heterogeneity is an important process that can compensate for downstream advection, enabling aquatic organisms to persist or spread upstream. Our main focus was the effect of year-to-year variation in larval dispersal on invasion spread rate. We used the green crab, Carcinus maenas, as a case study. This species was first introduced over 200 years ago to the east coast of North America, and once established has maintained a relatively consistent spread rate against the dominant current. We used a stage-structured, integro-difference equation model that couples a demographic matrix for population growth and dispersal kernels for spread of individuals within a season. The kernel describing larval dispersal, the main dispersive stage, was mechanistically modeled to include both drift and settlement rate components. It was parameterized using a 3-dimensional hydrodynamic model of the Gulf of St Lawrence, which enabled us to incorporate larval behavior, namely vertical swimming. Dispersal heterogeneity was modeled at two temporal scales: within the larval period (months) and over the adult lifespan (years). The kernel models variation within the larval period. To model the variation among years, we allowed the kernel parameters to vary by year. Results indicated that when dispersal parameters vary with time, knowledge of the time-averaged dispersal process is insufficient for determining the upstream spread rate of the population. Rather upstream spread is possible over a number of years when incorporating the yearly variation, even when there are only a few "good years" featured by some upstream dispersal among many "bad years" featured by only downstream dispersal. Accounting for annual variations in dispersal in population models is important to enhance understanding of spatial dynamics and population spread rates. Our developed model also provides a good platform to link the modeling of larval behavior and demography to large-scale hydrodynamic models.


Subject(s)
Crustacea , Stochastic Processes , Animals , Atlantic Ocean , Demography , Northwestern United States , Seasons
3.
Math Biosci Eng ; 13(5): 969-980, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27775392

ABSTRACT

A patch-structured multigroup-like $SIS$ epidemiological model is proposed to study the spread of the common bed bug infestation. It is shown that the model exhibits global threshold dynamics with the basic reproduction number as the threshold parameter. Costs associated with the disinfestation process are incorporated into setting up the optimization problems. Procedures are proposed and simulated for finding optimal resource allocation strategies to achieve the infestation free state. Our analysis and simulations provide useful insights on how to efficiently distribute the available exterminators among the infested patches for optimal disinfestation management.


Subject(s)
Bedbugs , Insect Control/statistics & numerical data , Models, Theoretical , Resource Allocation , Animals , Computer Simulation , Insect Control/economics
SELECTION OF CITATIONS
SEARCH DETAIL
...