Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
BMC Microbiol ; 24(1): 347, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39277715

ABSTRACT

BACKGROUND: Linezolid-resistant Enterococcus faecium (LRE) is a global priority pathogen. Thirteen LRE were reported from clinical specimens between November 2021 and April 2023 at two laboratories in Karachi, Pakistan. We aimed to investigate the strain types and genes associated with linezolid resistance among these isolates. Whole genome sequencing (WGS) was performed and analyzed by multilocus sequence typing (MLST). The presence of linezolid resistance genes was identified using ResFinder v4.1.11 and the LRE-finder tool. RESULTS: Twelve isolates belonged to clonal complex 17 (CC17); ST80 (n = 10), ST612 (n = 1) and ST1380 (n = 1). Six isolates showed the presence of optrA gene and G2576T mutations in the 23S rRNA gene, while six showed poxtA and cfr(D) genes. One isolate showed the combination of optrA, cfr(D) and poxtA genes. CONCLUSION: Our findings show the circulation of CC17 sequence types with a known outbreak potential and we identified molecular mechanisms of resistance that were not previously reported from Pakistan.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Enterococcus faecium , Gram-Positive Bacterial Infections , Linezolid , Microbial Sensitivity Tests , Multilocus Sequence Typing , Whole Genome Sequencing , Enterococcus faecium/genetics , Enterococcus faecium/drug effects , Enterococcus faecium/isolation & purification , Enterococcus faecium/classification , Pakistan , Linezolid/pharmacology , Humans , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/epidemiology , RNA, Ribosomal, 23S/genetics , Female , Male , Genome, Bacterial/genetics , Genomics , Adult , Bacterial Proteins/genetics , Middle Aged , Mutation
2.
Acta Microbiol Immunol Hung ; 69(4): 259-269, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36342667

ABSTRACT

Ginsenoside Rg1 is one of the major ginsenosides found in roots of Panax ginseng and Panax notoginseng. Ginsenoside Rg1 is known to possess various biological activities including immunity enhancement activity. However, it is not clear whether the regulation of immune function by Rg1 is related to the intestinal microbiota. In the present study, the immuno-modulatory and gut microbiota-reshaping effects of ginsenoside Rg1 were evaluated. Ginsenoside Rg1 acts as an immune-enhancing agent to increase spleen index and the number of T, B and dendritic cells in dexamethasone (Dex)-treated mice. Ginsenoside Rg1 also increased the production of sIgA and regulated the expression of interleukin 2 (IL-2), IL-4, IL-10 and IFN-γ. Meanwhile, Rg1 administration regulated the structure of intestinal microbiota. The relative abundance of mouse intestinal microbial groups, such as Alistipes, Ruminococcaceae, Lachnospiraceae, and Roseburia were increased by Rg1 administration, whereas a decrease in the potential pathogens like Helicobacteraceae, Dubosiella, Mycoplasma, Alloprevotella, Allobaculum was observed. Moreover, Rg1 metabolites of Lachnospiraceae bacterium enhanced the proliferation of CD4+ T cells and T regulatory (Treg) cells. Ginsenoside Rg1 improved the inflammatory condition of the colonic tissue and repaired the destructed mucosal barrier. This study suggested that Rg1 strengthens immunity with regulating the homeostasis of intestinal microbiota in mice.


Subject(s)
Gastrointestinal Microbiome , Mice , Animals , Dexamethasone/pharmacology
3.
Eur J Pharmacol ; 907: 174305, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34224698

ABSTRACT

Gastric cancer (G.C) is one of the most lethal cancer types worldwide. Current treatment requires surgery along with chemotherapy, which causes obstacles for speedy recovery. The discovery of novel drugs is needed for better treatment of G.C with minimum side effects. Latcripin-7A (LP-7A) is a newly discovered peptide extracted from Lentinula edodes. It is recently studied for its anti-cancer activity. In this study, LP-7A was modeled using a phyre2 server. Anti-proliferation effects of LP-7A on G.C cells were examined via CCK-8, colony formation, and morphology assay. Apoptosis of LP-7A treated G.C cells was evaluated via Hoechst Stain, western blot and flow cytometry. Autophagy was assessed via acridine orange staining and western blot. The cell cycle was assessed via flow cytometry assay and western blot. Pathway was studied via western blot and STRING database. Anti-migratory effects of LP-7A treated G.C cells were analyzed via wound healing, western blot, and migration and invasion assay. LP-7A effectively inhibited the growth of G.C cells by inhibiting the PI3K/Akt/mTOR pathway. G.C cells treated with LP-7A arrested the cell cycle at the G1 phase, contributing to the inhibition of migration and invasion. Furthermore, LP-7A induced apoptosis and autophagy in gastric cancer cells. These results indicated that LP-7A is a promising anti-cancer agent. It affected the proliferation and growth of G.C cells (SGC-7901 and BGC-823) by inducing apoptosis, autophagy, and inhibiting cell cycle at the G1 phase in G.C cells.


Subject(s)
Phosphatidylinositol 3-Kinases , Autophagy/drug effects , Humans , Proto-Oncogene Proteins c-akt , Shiitake Mushrooms , Signal Transduction/drug effects , Stomach Neoplasms , TOR Serine-Threonine Kinases
SELECTION OF CITATIONS
SEARCH DETAIL