Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 89, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38168121

ABSTRACT

Borate antimony glass doped with vanadium oxide V2O5 encoded into a [BSV glass system] was prepared with the traditional melt quenching technique. The Nickel ferrite [NiFe2O4] was prepared using Flash auto-combustion and mixed at a fixed ratio of 0.05 gm into the glass matrix to form a BSV- composite glass system [BSV / NiFe2O4], which was also prepared using the traditional melt quenching technique. The X-Ray diffraction pattern was used to characterize the glass samples and indicated their amorphous structure, with different structure phases for different levels of V2O5 content. Ranging from 200 to 1100 nm, UV-Vis spectroscopy was used to study the optical properties of the samples. The glass was found to absorb electromagnetic waves with wavelengths lower than 500 nm, while the energy gap decreased from 2.46 eV for 0.1 mol% V2O5 to 2.39 eV for 0.5 wt% V2O5. The Urbach energy also had the same behavior, and decreasing from 0.226 to 0.217 eV. On the other hand, the refractive index increased when V2O5 was added. The thermal characteristics of a [BSV / NiFe2O4] system, such as, glass transition temperature [Formula: see text], onset temperature [Formula: see text], crystallization temperature [Formula: see text] and melting temperature [Formula: see text] were studied using a Differential Scanning Calorimeter. Using continuous and pulsed laser radiation, a [BSV-0.1 V2O5 / NiFe2O4] sample was exposed to laser irradiation to observe its effect on the optical features of the glass. Laser irradiation significantly changed the absorbance spectrum, while the energy gap decreased as time increased. The pulsed laser was found to have a more power-full and uniform effect compared to continuous laser. Time-dependent density function theory was used to optimize the geometrical structure of the glass and study the effect of the formation of 4- coordinate boron atoms on its properties.

2.
Polymers (Basel) ; 15(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36904350

ABSTRACT

Conducting poly orthophenylene diamine polymer (PoPDA) was synthesized via the oxidative polymerization route. A poly(o-phenylene diamine) (PoPDA)/titanium dioxide nanoparticle mono nanocomposite [PoPDA/TiO2]MNC was synthesized using the sol-gel method. The physical vapor deposition (PVD) technique was successfully used to deposit the mono nanocomposite thin film with good adhesion and film thickness ≅ 100 ± 3 nm. The structural and morphological properties of the [PoPDA/TiO2]MNC thin films were studied by X-ray diffraction (XRD) and scanning electron microscope (SEM). The measured optical properties of the [PoPDA/TiO2]MNC thin films such as reflectance (R) in the UV-Vis-NIR spectrum, absorbance (Abs), and transmittance (T) were employed to probe the optical characteristics at room temperatures. As well as the calculations of TD-DFT (time-dependent density functional theory), optimization through the TD-DFTD/Mol3 and Cambridge Serial Total Energy Bundle (TD-DFT/CASTEP) was employed to study the geometrical characteristics. The dispersion of the refractive index was examined by the single oscillator Wemple-DiDomenico (WD) model. Moreover, the single oscillator energy (Eo), and the dispersion energy (Ed) were estimated. The obtained results show that thin films based on [PoPDA/TiO2]MNC can be utilized as a decent candidate material for solar cells and optoelectronic devices. The efficiency of the considered composites reached 19.69%.

SELECTION OF CITATIONS
SEARCH DETAIL
...