Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Fluoresc ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38773030

ABSTRACT

This work explores the effects of solvent polarity on Janus Green B (JGB) photophysical properties. The Lippert-Mataga, Billot, and Ravi equations were utilized to calculate the singlet-state excited dipole moments (µe) and ground state dipole moments (µg) using absorption and fluorescence spectra analyses. The results showed an increase in the former, which is suggestive of electronic structural alterations upon excitation. Analysis of fluorescence quantum yield values revealed that JGB's environment had an impact on its emission characteristics; it was particularly sensitive to silver nanoparticles, suggesting possible interactions. While simulations of electron density, electrostatic potential, and energy gap (Eg) helped to understand the electronic structure of JGB, theoretical absorption spectra produced by Time Dependent Density Function Theory (TD-DFT) calculations offered insights into electronic transitions during absorption. To sum up, the present study contributes to our comprehension of the molecular behavior of JGB in various solvents by elucidating the intricate relationship among solvent polarity, molecular environment, and interactions with silver nanoparticles. Additionally, theoretical computations support the interpretation of experimental results.

2.
Sci Rep ; 13(1): 18686, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37907586

ABSTRACT

The condensation of pyrrole-2,5-dicarbaldehyde (1) with 5-(2-amino-4-phenylthiazol-5-yl)-4-phenylthiazol-2-amine (2) and/or 5-(4-Amino-phenyl)-4-phenylthiazol-2-amine (3) gave new poly(Z)-N-((5-(iminomethyl)-1H-pyrrol-2-yl)methylene)-5-(2-((E)-(5-(iminomethyl)-I-pyrrol-2-yl)methyleneamino)-4-phenylthiazol-5-yl)-4-phenylthiaol-2-amine (P1) and/or poly(E)-N-((5-(iminomethyl)-1H-pyrrol-2-yl)methylene)-5-(4-((E)-(5-(iminomethyl)-1H-pyrrol-2-yl)methyleneamino)phenyl)-4-phenylthiaol-2-amine (P2) as a novel conjugated polymer by microwave irradiation and traditional heating.. It is evident that the microwave irradiation technique quickly raised the molecular weight of polyimines. In addition to quantifying the molecular weight of the resultant polyimines. All the polyimines were characterized using FTIR, XRD, H1NMR, TGA, and DSC. The optical characteristics of polyimine derivatives were investigated using a UV-Vis spectrophotometer. The absorption spectra showed a main absorption band around 372 nm for polyimine (P1) and 381 nm for polyimine (P2). The optical energy was calculated and found to be 2.49 and 2.68 eV. The photoluminescence of the polyimine derivatives was measured and analyzed by spectrofluorometer and Laser photoluminescence experiment and the emission color was studied using CIE graphs. The fluorescence spectra showed an emission peak at 548 nm for polyimine (P1) with yellow green color in CIE graph, while for polyimine (P2) the emission band was located at 440.5 nm with blue color in CIE graph. Photoluminescence quantum yield PLQY was measured for the polyimine P1 and P2 in both liquid and Solid states and indicated the AIE behavior of the polyimines. TD-DFT simulations were applied to the polyimine derivatives where the structures were geometrically optimized and the spectroscopic characterizations were evaluated.

3.
Environ Sci Pollut Res Int ; 30(50): 109250-109265, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37759061

ABSTRACT

The antibacterial activity of a variety of modified poly(methyl methacrylate) Schiff bases against common microbial infections and removal of methylene blue (MB) dye were screened. The Schiff bases were synthesized from the reaction of the modified (PMMA) with vanillin (PMMA)Van and cinnamaldehyde (PMMA)Cin. By using Fourier transformer infrared (FT-IR), X-ray diffraction analysis (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM), the structures of the nanofibers of the synthesized Schiff bases were confirmed. The modified Kirky-Bauer method was used to screen the antibacterial activities of all the obtained materials against various bacterial species, including gram-positive bacterial (Bacillus subtilis (4k1p), Staphylococcus aureus), Gram-negative bacteria (Escherichia coli (7ab3), Pseudomonas aeruginosa). Inhibition zones against gram-positive bacteria ranged in diameter from 7 to 14 mm, whereas for the Gram-negative bacteria, the inhibition zones found to be ranged between 6 and 13 mm. With a minimum bactericidal concentration (MBC) of 8 mg/mL and a minimum inhibitory concentration (MIC) of 2 mg/mL, (PMMA)Van shown the greatest antibacterial activity. Lastly, molecular docking research was done to better understand the interactions between this series' targets and inhibitors for (PMMA)Van and (PMMA)Cin (4k1p and 7ab3). Molecular modeling of these surface-adsorbed polymers indicated that (PMMA)Van binds more strongly with Nitrogen than does (PMMA)Cin through extra hydrogen-bonding interactions. All the developed materials were evaluated for the removal of 0.1 g/L methylene blue dye (MB) from an aqueous solution. The elimination percentage of MB dye ranged from 26.67% by using 0.05 g powder of (PMMA)Cin to 85.63% by employing 0.05 g nanofibers of (PMMA)Van.


Subject(s)
Polymethyl Methacrylate , Schiff Bases , Polymethyl Methacrylate/chemistry , Molecular Docking Simulation , Schiff Bases/chemistry , Spectroscopy, Fourier Transform Infrared , Methylene Blue/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polymers , Microbial Sensitivity Tests
4.
Macromol Biosci ; 23(11): e2300090, 2023 11.
Article in English | MEDLINE | ID: mdl-37376773

ABSTRACT

A significant issue in cancer biology is finding anticancer therapies that effectively kill cancer cells. Through the use of several aldehydes, Schiff bases based on branched poly (p-hydroxy styrene) are created. The branched polymer is first chloroacetylated, then aminated with 1,4-phenylenediamine, and finally, aldehydes are reacted with the aminated polymer to produce the Schiff base compounds. Through the utilization of FTIR, TGA, XRD, NMR, and elemental analysis, all synthesized Schiff-bases are identified and characterized. Further, the antineoplastic potential of all Schiff bases is evaluated against different cancer cell lines. The results gained from this study indicate that the Schiff base polymers have cytotoxic power against cancer cells depending on cancer cell type and this antiproliferation potency is dose-concentration dependent. Importantly, the prepared S1 Schiff-base polymer shows potent cytotoxicity and is able to trigger the apoptosis and reactive oxygen species (ROS) in MCF-7 cells. Further, it downregulates VEGFR protein expression. The Schiff base polymers would have extensive applications in the biological disciplines.


Subject(s)
Antineoplastic Agents , Schiff Bases , Humans , Schiff Bases/pharmacology , Schiff Bases/chemistry , MCF-7 Cells , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Aldehydes , Polymers , Styrenes
5.
Sci Rep ; 13(1): 7292, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37147449

ABSTRACT

Borate glasses (BG) doped with different amounts of ZnO (0-0.6 mol%) were formed by the traditional melt quenching technique. The different glasses so made were characterized using different characterization techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), and UV-Vis absorption optical properties. The XRD patterns showed an amorphous structure with one broad peak at 2θ = 29°, while the phonons bands were studied in terms of the FTIR bands. Optical properties of the glasses were studied using UV-Vis absorption spectra in the range 190-1100 nm, in which the prominent band lies at about 261.5 nm of peak position, from which the bandgab (Eg) was calculated from its edge using Tauc's plot, with Eg ~ 3.5 eV. The laser irradiation showed no significant changes in the absorption bands, despite a significant change observed in the amorphous behavior in the XRD pattern. The cell viability was performed for two samples of the BG and 0.6 mol% ZnO doped using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay method. The result showed better cell viability and low toxicity. So, ZnO doped BG can be used in various biomedical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...