Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Mol Cancer ; 22(1): 88, 2023 05 29.
Article in English | MEDLINE | ID: mdl-37246217

ABSTRACT

BACKGROUND: Neuroblastoma is the most common solid tumor in infants accounting for approximately 15% of all cancer-related deaths. Over 50% of high-risk neuroblastoma relapse, emphasizing the need of novel drug targets and therapeutic strategies. In neuroblastoma, chromosomal gains at chromosome 17q, including IGF2BP1, and MYCN amplification at chromosome 2p are associated with adverse outcome. Recent, pre-clinical evidence indicates the feasibility of direct and indirect targeting of IGF2BP1 and MYCN in cancer treatment. METHODS: Candidate oncogenes on 17q were identified by profiling the transcriptomic/genomic landscape of 100 human neuroblastoma samples and public gene essentiality data. Molecular mechanisms and gene expression profiles underlying the oncogenic and therapeutic target potential of the 17q oncogene IGF2BP1 and its cross-talk with MYCN were characterized and validated in human neuroblastoma cells, xenografts and PDX as well as novel IGF2BP1/MYCN transgene mouse models. RESULTS: We reveal a novel, druggable feedforward loop of IGF2BP1 (17q) and MYCN (2p) in high-risk neuroblastoma. This promotes 2p/17q chromosomal gains and unleashes an oncogene storm resulting in fostered expression of 17q oncogenes like BIRC5 (survivin). Conditional, sympatho-adrenal transgene expression of IGF2BP1 induces neuroblastoma at a 100% incidence. IGF2BP1-driven malignancies are reminiscent to human high-risk neuroblastoma, including 2p/17q-syntenic chromosomal gains and upregulation of Mycn, Birc5, as well as key neuroblastoma circuit factors like Phox2b. Co-expression of IGF2BP1/MYCN reduces disease latency and survival probability by fostering oncogene expression. Combined inhibition of IGF2BP1 by BTYNB, MYCN by BRD inhibitors or BIRC5 by YM-155 is beneficial in vitro and, for BTYNB, also. CONCLUSION: We reveal a novel, druggable neuroblastoma oncogene circuit settling on strong, transcriptional/post-transcriptional synergy of MYCN and IGF2BP1. MYCN/IGF2BP1 feedforward regulation promotes an oncogene storm harboring high therapeutic potential for combined, targeted inhibition of IGF2BP1, MYCN expression and MYCN/IGF2BP1-effectors like BIRC5.


Subject(s)
Neuroblastoma , Animals , Humans , Infant , Mice , Cell Line, Tumor , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genes, myc , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , Neoplasm Recurrence, Local/genetics , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Neuroblastoma/metabolism
2.
Int J Mol Sci ; 23(14)2022 Jul 07.
Article in English | MEDLINE | ID: mdl-35886887

ABSTRACT

In addition to involvement in epigenetic gene regulation, histone deacetylases (HDACs) regulate multiple cellular processes through mediating the activity of non-histone protein substrates. The knockdown of HDAC8 isozyme is associated with the inhibition of cell proliferation and apoptosis enhancement in several cancer cell lines. As shown in several studies, HDAC8 can be considered a potential target in the treatment of cancer forms such as childhood neuroblastoma. The present work describes the development of proteolysis targeting chimeras (PROTACs) of HDAC8 based on substituted benzhydroxamic acids previously reported as potent and selective HDAC8 inhibitors. Within this study, we investigated the HDAC8-degrading profiles of the synthesized PROTACs and their effect on the proliferation of neuroblastoma cells. The combination of in vitro screening and cellular testing demonstrated selective HDAC8 PROTACs that show anti-neuroblastoma activity in cells.


Subject(s)
Histone Deacetylase Inhibitors , Histone Deacetylases , Neuroblastoma , Humans , Cell Line, Tumor/metabolism , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/chemistry , Histone Deacetylases/metabolism , Neuroblastoma/metabolism , Proteolysis , Repressor Proteins/metabolism
3.
Pharmaceuticals (Basel) ; 15(1)2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35056137

ABSTRACT

Schistosomiasis is a major neglected parasitic disease that affects more than 240 million people worldwide and for which the control strategy consists of mass treatment with the only available drug, praziquantel. Schistosomes display morphologically distinct stages during their life cycle and the transformations between stages are controlled by epigenetic mechanisms. The targeting of epigenetic actors might therefore represent the parasites' Achilles' heel. Specifically, histone deacetylases have been recently characterized as drug targets for the treatment of schistosomiasis. This review focuses on the recent development of inhibitors for schistosome histone deacetylases. In particular, advances in the development of inhibitors of Schistosoma mansoni histone deacetylase 8 have indicated that targeting this enzyme is a promising approach for the treatment of this infection.

4.
Eur J Med Chem ; 225: 113745, 2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34392190

ABSTRACT

Schistosomiasis is a major neglected parasitic disease that affects more than 265 million people worldwide and for which the control strategy consists of mass treatment with the only available drug, praziquantel. In this study, we chemically optimized our previously reported benzhydroxamate-based inhibitors of Schistosoma mansoni histone deacetylase 8 (smHDAC8). Crystallographic analysis provided insights into the inhibition mode of smHDAC8 activity by the highly potent inhibitor 5o. Structure-based optimization of the novel inhibitors was carried out using the available crystal structures as well as docking studies on smHDAC8. The compounds were evaluated in screens for inhibitory activity against schistosome and human HDACs (hHDAC). The in vitro and docking results were used for detailed structure activity relationships. The synthesized compounds were further investigated for their lethality against the schistosome larval stage using a fluorescence-based assay. The most promising inhibitor 5o showed significant dose-dependent killing of the schistosome larvae and markedly impaired egg laying of adult worm pairs maintained in culture.


Subject(s)
Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Schistosomiasis/drug therapy , Animals , Crystallography, X-Ray , Dose-Response Relationship, Drug , HEK293 Cells , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Humans , Models, Molecular , Molecular Structure , Recombinant Proteins/metabolism , Schistosoma mansoni/enzymology , Structure-Activity Relationship
5.
Molecules ; 26(9)2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33925246

ABSTRACT

Histone-modifying proteins have been identified as promising targets to treat several diseases including cancer and parasitic ailments. In silico methods have been incorporated within a variety of drug discovery programs to facilitate the identification and development of novel lead compounds. In this study, we explore the binding modes of a series of benzhydroxamates derivatives developed as histone deacetylase inhibitors of Schistosoma mansoni histone deacetylase (smHDAC) using molecular docking and binding free energy (BFE) calculations. The developed docking protocol was able to correctly reproduce the experimentally established binding modes of resolved smHDAC8-inhibitor complexes. However, as has been reported in former studies, the obtained docking scores weakly correlate with the experimentally determined activity of the studied inhibitors. Thus, the obtained docking poses were refined and rescored using the Amber software. From the computed protein-inhibitor BFE, different quantitative structure-activity relationship (QSAR) models could be developed and validated using several cross-validation techniques. Some of the generated QSAR models with good correlation could explain up to ~73% variance in activity within the studied training set molecules. The best performing models were subsequently tested on an external test set of newly designed and synthesized analogs. In vitro testing showed a good correlation between the predicted and experimentally observed IC50 values. Thus, the generated models can be considered as interesting tools for the identification of novel smHDAC8 inhibitors.


Subject(s)
Helminth Proteins/chemistry , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylases/chemistry , Quantitative Structure-Activity Relationship , Schistosoma mansoni/enzymology , Animals , Dose-Response Relationship, Drug , Helminth Proteins/antagonists & inhibitors , Histone Deacetylase Inhibitors/pharmacology , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Reproducibility of Results
6.
PLoS Negl Trop Dis ; 15(3): e0009226, 2021 03.
Article in English | MEDLINE | ID: mdl-33657105

ABSTRACT

BACKGROUND: Echinococcosis and cysticercosis are neglected tropical diseases caused by cestode parasites (family Taeniidae). Not only there is a small number of approved anthelmintics for the treatment of these cestodiases, but also some of them are not highly effective against larval stages, such that identifying novel drug targets and their associated compounds is critical. Histone deacetylase (HDAC) enzymes are validated drug targets in cancers and other diseases, and have been gaining relevance for developing new potential anti-parasitic treatments in the last years. Here, we present the anthelmintic profile for a panel of recently developed HDAC inhibitors against the model cestode Mesocestoides vogae (syn. M. corti). METHODOLOGY/PRINCIPAL FINDINGS: Phenotypic screening was performed on M. vogae by motility measurements and optical microscopic observations. Some HDAC inhibitors showed potent anthelmintic activities; three of them -entinostat, TH65, and TH92- had pronounced anthelmintic effects, reducing parasite viability by ~100% at concentrations of ≤ 20 µM. These compounds were selected for further characterization and showed anthelmintic effects in the micromolar range and in a time- and dose-dependent manner. Moreover, these compounds induced major alterations on the morphology and ultrastructural features of M. vogae. The potencies of these compounds were higher than albendazole and the anthelmintic effects were irreversible. Additionally, we evaluated pairwise drug combinations of these HDAC inhibitors and albendazole. The results suggested a positive interaction in the anthelmintic effect for individual pairs of compounds. Due to the maximum dose approved for entinostat, adjustments in the dose regime and/or combinations with currently-used anthelmintic drugs are needed, and the selectivity of TH65 and TH92 towards parasite targets should be assessed. CONCLUSION, SIGNIFICANCE: The results presented here suggest that HDAC inhibitors represent novel and potent drug candidates against cestodes and pave the way to understanding the roles of HDACs in these parasites.


Subject(s)
Anthelmintics/pharmacology , Benzamides/pharmacology , Histone Deacetylase Inhibitors/pharmacology , Mesocestoides/drug effects , Pyridines/pharmacology , Albendazole/pharmacology , Animals , Cestode Infections , Larva/anatomy & histology , Larva/drug effects , Mesocestoides/anatomy & histology
7.
Biochem Pharmacol ; 180: 114191, 2020 10.
Article in English | MEDLINE | ID: mdl-32777278

ABSTRACT

The protozoan parasite Leishmania braziliensis is a major causative agent of the neglected tropical diseases Cutaneous and Mucocutaneous Leishmaniases in the New World. There are no vaccines to prevent the infection and the treatment relies on few drugs that often display high toxicity and costs. Thus, chemotherapeutic alternatives are required. Histone Deacetylases (HDACs) are epigenetic enzymes involved in the control of chromatin structure. In this work, we tested an in-house library of 78 hydroxamic acid derivatives as putative inhibitors of L. braziliensis HDACs (HDACi). The compounds were evaluated in relation to the toxicity to the host cell macrophage and to the leishmanicidal effect against L. braziliensis during in vitro infection. Eight HDACi showed significant leishmanicidal effects and the top 5 compounds showed effective concentrations (EC50) in the range of 4.38 to 10.21 µM and selectivity indexes (SI) from of 6 to 21.7. Analyses by Transmission Electron Microscopy (TEM) indicated induction of apoptotic cell death of L. braziliensis amastigotes with a necrotic phenotype. An altered chromatin condensation pattern and cellular disorganization of intracellular amastigotes was also observed. A tight connection between the mitochondrion and nuclear protrusions, presumably of endoplasmic reticulum origin, was found in parasites but not in the host cell. In flow cytometry (FC) analyses, HDACi promoted parasite cell cycle arrest in the G2-M phase and no changes were found in macrophages. In addition, the direct effect of HDACi against the promastigotes showed apoptosis as the main mechanism of cell death. The FC results corroborate the TEM analyses indicating that the HDACi lead to changes in the cell cycle and induction of apoptosis of L. braziliensis. The production of nitric oxide by the infected macrophages was not altered after treatment with the top 5 compounds. Taken together, our results evidenced new HDACi as promising agents for the development of new treatments for American Tegumentary Leishmaniasis caused by L. braziliensis.


Subject(s)
Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , Leishmania braziliensis/drug effects , Leishmania braziliensis/enzymology , Leishmaniasis, Cutaneous/enzymology , Animals , Cell Survival/drug effects , Cell Survival/physiology , Histone Deacetylase Inhibitors/therapeutic use , Humans , Leishmania braziliensis/ultrastructure , Leishmaniasis, Cutaneous/drug therapy , Leishmaniasis, Cutaneous/pathology , Macrophages/drug effects , Macrophages/enzymology , Macrophages/ultrastructure , Mice , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/metabolism , RAW 264.7 Cells
8.
Eur J Med Chem ; 206: 112676, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32858418

ABSTRACT

We report here an extensive structure-activity relationship study of balsalazide, which was previously identified in a high-throughput screening as an inhibitor of Sirt5. To get a closer understanding why this compound is able to inhibit Sirt5, we initially performed docking experiments comparing the binding mode of a succinylated peptide as the natural substrate and balsalazide with Sirt5 in the presence of NAD+. Based on the evidence gathered here, we designed and synthesized 13 analogues of balsalazide, in which single functional groups were either deleted or slightly altered to investigate which of them are mandatory for high inhibitory activity. Our study confirms that balsalazide with all its given functional groups is an inhibitor of Sirt5 in the low micromolar concentration range and structural modifications presented in this study did not increase potency. While changes on the N-aroyl-ß-alanine side chain eliminated potency, the introduction of a truncated salicylic acid part minimally altered potency. Calculations of the associated reaction paths showed that the inhibition potency is very likely dominated by the stability of the inhibitor-enzyme complex and not the type of inhibition (covalent vs. non-covalent). Further in-vitro characterization in a trypsin coupled assay determined that the tested inhibitors showed no competition towards NAD+ or the synthetic substrate analogue ZKsA. In addition, investigations for subtype selectivity revealed that balsalazide is a subtype-selective Sirt5 inhibitor, and our initial SAR and docking studies pave the way for further optimization.


Subject(s)
Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Mesalamine/chemistry , Mesalamine/pharmacology , Molecular Docking Simulation , Phenylhydrazines/chemistry , Phenylhydrazines/pharmacology , Sirtuins/antagonists & inhibitors , Drug Design , Histone Deacetylase Inhibitors/metabolism , Mesalamine/metabolism , Phenylhydrazines/metabolism , Protein Conformation , Salicylic Acid/chemistry , Sirtuins/chemistry , Sirtuins/metabolism , Structure-Activity Relationship
9.
Eur J Med Chem ; 200: 112338, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32497960

ABSTRACT

Histone modifying proteins, specifically histone deacetylases (HDACs) and bromodomains, have emerged as novel promising targets for anticancer therapy. In the current work, based on available crystal structures and docking studies, we designed dual inhibitors of both HDAC6/8 and the bromodomain and PHD finger containing protein 1 (BRPF1). Biochemical and biophysical tests showed that compounds 23a,b and 37 are nanomolar inhibitors of both target proteins. Detailed structure-activity relationships were deduced for the synthesized inhibitors which were supported by extensive docking and molecular dynamics studies. Cellular testing in acute myeloid leukemia (AML) cells showed only a weak effect, most probably because of the poor permeability of the inhibitors. We also aimed to analyse the target engagement and the cellular activity of the novel inhibitors by determining the protein acetylation levels in cells by western blotting (tubulin vs histone acetylation), and by assessing their effects on various cancer cell lines.


Subject(s)
Adaptor Proteins, Signal Transducing/antagonists & inhibitors , Antineoplastic Agents/chemical synthesis , DNA-Binding Proteins/antagonists & inhibitors , Drug Design , Histone Deacetylase 6/antagonists & inhibitors , Repressor Proteins/antagonists & inhibitors , Acetylation/drug effects , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Molecular Docking Simulation , Molecular Dynamics Simulation , Structure-Activity Relationship
10.
Biochemistry ; 58(48): 4777-4789, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31682411

ABSTRACT

We developed a one-step direct assay for the determination of histone deacylase (HDAC) activity by substituting the carbonyl oxygen of the acyl moiety with sulfur, resulting in thioacylated lysine side chains. This modification is recognized by class I HDACs with different efficiencies ranging from not accepted for HDAC1 to kinetic constants similar to that of the parent oxo substrate for HDAC8. Class II HDACs can hydrolyze thioacylated substrates with approximately 5-10-fold reduced kcat values, which resembles the effect of thioamide substitution in metallo-protease substrates. Class IV HDAC11 accepts thiomyristoyl modification less efficiently with an ∼5-fold reduced specificity constant. On the basis of the unique spectroscopic properties of thioamide bonds (strong absorption in spectral range of 260-280 nm and efficient fluorescence quenching), HDAC-mediated cleavage of thioamides could be followed by ultraviolet-visible and fluorescence spectroscopy in a continuous manner. The HDAC activity assay is compatible with microtiter plate-based screening formats up to 1536-well plates with Z' factors of >0.75 and signal-to-noise ratios of >50. Using thioacylated lysine residues in p53-derived peptides, we optimized substrates for HDAC8 with a catalytic efficiency of >250000 M-1 s-1, which are more than 100-fold more effective than most of the known substrates. We determined inhibition constants of several inhibitors for human HDACs using thioacylated peptidic substrates and found good correlation with the values from the literature. On the other hand, we could introduce N-methylated, N-acylated lysine residues as inhibitors for HDACs with an IC50 value of 1 µM for an N-methylated, N-myristoylated peptide derivative and human HDAC11.


Subject(s)
Histone Deacetylases/chemistry , Histone Deacetylases/metabolism , Biocatalysis , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/metabolism , Histone Deacetylases/genetics , Humans , Kinetics , Lysine/chemistry , Lysine/metabolism , Thioamides/chemistry , Thioamides/metabolism
11.
J Med Chem ; 60(24): 10188-10204, 2017 12 28.
Article in English | MEDLINE | ID: mdl-29190092

ABSTRACT

Histone deacetylases (HDACs) are important modulators of epigenetic gene regulation and additionally control the activity of non-histone protein substrates. While for HDACs 1-3 and 6 many potent selective inhibitors have been obtained, for other subtypes much less is known on selective inhibitors and the consequences of their inhibition. The present report describes the development of substituted benzhydroxamic acids as potent and selective HDAC8 inhibitors. Docking studies using available crystal structures have been used for structure-based optimization of this series of compounds. Within this study, we have investigated the role of HDAC8 in the proliferation of cancer cells and optimized hits for potency and selectivity, both in vitro and in cell culture. The combination of structure-based design, synthesis, and in vitro screening to cellular testing resulted in potent and selective HDAC8 inhibitors that showed anti-neuroblastoma activity in cellular testing.


Subject(s)
Antineoplastic Agents/pharmacology , Histone Deacetylase Inhibitors/chemistry , Histone Deacetylase Inhibitors/pharmacology , Neuroblastoma/drug therapy , Repressor Proteins/antagonists & inhibitors , Antineoplastic Agents/chemistry , Biomarkers, Tumor/genetics , Cell Line, Tumor , Drug Design , Drug Screening Assays, Antitumor , Gene Expression Regulation, Neoplastic/drug effects , HEK293 Cells , Histone Deacetylases/chemistry , Histone Deacetylases/metabolism , Humans , Hydroxamic Acids/chemistry , Molecular Docking Simulation , Neuroblastoma/genetics , Neuroblastoma/pathology , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...