Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Biol Macromol ; 265(Pt 2): 130997, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38508568

ABSTRACT

Cancer remains a global health challenge, demanding novel therapeutic options due to the debilitating side effects of conventional treatments on healthy tissues. The review highlights the potential of L-methioninase, a pyridoxal-5-phosphate (PLP)-dependent enzyme, as a promising avenue in alternative cancer therapy. L-methioninase offers a unique advantage, its ability to selectively target and inhibit the growth of cancer cells without harming healthy cells. This selectivity arises because tumor cells lack an essential enzyme called methionine synthase, which healthy cells use to make the vital amino acid L-methionine. Several sources harbor L-methioninase, including bacteria, fungi, plants, and protozoa. Future research efforts can explore and exploit this diverse range of sources to improve the therapeutic potential of L-methioninase in the fight against cancer. Despite challenges, research actively explores microbial L-methioninase for its anticancer potential. This review examines the enzyme's side effects, advancements in combination therapies, recombinant technologies, polymer conjugation and novel delivery methods like nanoparticles, while highlighting the success of oral administration in preclinical trials. Beyond its promising role in cancer therapy, L-methioninase holds potential applications in food science, antioxidants, and various health concerns like diabetes, cardiovascular issues, and neurodegenerative diseases. This review provides a piece of current knowledge and future prospects of L-methioninase, exploring its diverse therapeutic potential.


Subject(s)
Carbon-Sulfur Lyases , Neoplasms , Humans , Carbon-Sulfur Lyases/metabolism , Neoplasms/drug therapy , Combined Modality Therapy , Fungi/metabolism , Methionine/metabolism , Recombinant Proteins/therapeutic use
2.
Lett Appl Microbiol ; 77(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38148133

ABSTRACT

The whole genome sequence (WGS) of Bacillus coagulans BCP92 is reported along with its genomic analysis of probiotics and safety features. The identification of bacterial strain was carried out using the 16S rDNA sequencing method. Furthermore, gene-related probiotic features, safety assessment (by in vitro and in silico), and genome stability were also studied using the WGS analysis for the possible use of the bacterial strain as a probiotic. From the BLAST analysis, bacterial strain was identified as Bacillus (Heyndrickxia) coagulans. WGS analysis indicated that the genome consists of a 3 475 658 bp and a GC-content of 46.35%. Genome mining of BCP92 revealed that the strain is consist of coding sequences for d-lactate dehydrogenase and l-lactate dehydrogenases, 36 genes involved in fermentation activities, 29 stress-responsive as well as many adhesions related genes. The genome, also possessing genes, is encoded for the synthesis of novel circular bacteriocin. Using an in-silico approach for the bacterial genome study, it was possible to determine that the Bacillus (Heyndrickxia) coagulans strain BCP92 contains genes that are encoded for the probiotic abilities and did not harbour genes that are risk associated, thus confirming the strain's safety and suitability as a probiotic to be used for human application.


Subject(s)
Bacillus coagulans , Bacillus , Bacteriocins , Probiotics , Humans , Bacillus coagulans/genetics , Bacillus/genetics , Bacteriocins/genetics , Genome, Bacterial
3.
Genomics Proteomics Bioinformatics ; 13(5): 296-303, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26602607

ABSTRACT

The development of next-generation sequencing (NGS) platforms spawned an enormous volume of data. This explosion in data has unearthed new scalability challenges for existing bioinformatics tools. The analysis of metagenomic sequences using bioinformatics pipelines is complicated by the substantial complexity of these data. In this article, we review several commonly-used online tools for metagenomics data analysis with respect to their quality and detail of analysis using simulated metagenomics data. There are at least a dozen such software tools presently available in the public domain. Among them, MGRAST, IMG/M, and METAVIR are the most well-known tools according to the number of citations by peer-reviewed scientific media up to mid-2015. Here, we describe 12 online tools with respect to their web link, annotation pipelines, clustering methods, online user support, and availability of data storage. We have also done the rating for each tool to screen more potential and preferential tools and evaluated five best tools using synthetic metagenome. The article comprehensively deals with the contemporary problems and the prospects of metagenomics from a bioinformatics viewpoint.


Subject(s)
Internet , Metagenomics/methods , Software , Cluster Analysis , Computational Biology/methods , High-Throughput Nucleotide Sequencing/methods , Humans , Information Storage and Retrieval , Metagenome/genetics
4.
Genom Data ; 4: 8-11, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26484168

ABSTRACT

Bacterial diversity and archaeal diversity in metagenome of the Lonar soda lake sediment were assessed by bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). Metagenome comprised 5093 sequences with 2,531,282 bp and 53 ± 2% G + C content. Metagenome sequence data are available at NCBI under the Bioproject database with accession no. PRJNA218849. Metagenome sequence represented the presence of 83.1% bacterial and 10.5% archaeal origin. A total of 14 different bacteria demonstrating 57 species were recorded with dominating species like Coxiella burnetii (17%), Fibrobacter intestinalis (12%) and Candidatus Cloacamonas acidaminovorans (11%). Occurrence of two archaeal phyla representing 24 species, among them Methanosaeta harundinacea (35%), Methanoculleus chikugoensis (12%) and Methanolinea tarda (11%) were dominating species. Significant presence of 11% sequences as an unclassified indicated the possibilities for unknown novel prokaryotes from the metagenome.

5.
Genom Data ; 4: 54-6, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26484176

ABSTRACT

A taxonomic description of bacteria was deduced from 5.78 Mb metagenomic sequence retrieved from Tulsi Shyam hot spring, India using bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). Metagenome contained 10,893 16S rDNA sequences that were analyzed by MG-RAST server to generate the comprehensive profile of bacteria. Metagenomic data are available at EBI under EBI Metagenomics database with accession no. ERP009559. Metagenome sequences represented the 98.2% bacteria origin, 1.5% of eukaryotic and 0.3% were unidentified. A total of 16 bacterial phyla demonstrating 97 families and 287 species were revealed in the hot spring metagenome. Most abundant phyla were Firmicutes (65.38%), Proteobacteria (21.21%) and unclassified bacteria (10.69%). Whereas, Peptostreptococcaceae (37.33%), Clostridiaceae (23.36%), and Enterobacteriaceae (16.37%) were highest reported families in metagenome. Ubiquitous species were Clostridium bifermentans (17.47%), Clostridium lituseburense (13.93%) and uncultured bacterium (10.15%). Our data provide new information on hot spring bacteria and shed light on their abundance, diversity, distribution and coexisting organisms.

6.
Data Brief ; 4: 266-8, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26217800

ABSTRACT

The data in this article contains the sequences of fungal Internal Transcribed Spacer (ITS) and 18S rRNA gene from a metagenome of Lonar soda lake, India. Sequences were amplified using fungal specific primers, which amplified the amplicon lined between the 18S and 28S rRNA genes. Data were obtained using Fungal tag-encoded FLX amplicon pyrosequencing (fTEFAP) technique and used to analyze fungal profile by the culture-independent method. Primary analysis using PlutoF 454 pipeline suggests the Lonar lake mycobiome contained the 29 different fungal species. The raw sequencing data used to perform this analysis along with FASTQ file are located in the NCBI Sequence Read Archive (SRA) under accession No. SRX889598 (http://www.ncbi.nlm.nih.gov/sra/SRX889598).

SELECTION OF CITATIONS
SEARCH DETAIL