Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Eur J Intern Med ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39095300

ABSTRACT

Pulmonary hypertension associated to left heart disease (PH-LHD) refers to a clinical and haemodynamic condition of pulmonary hypertension associated with a heterogeneous group of diseases affecting any of the compartments that form the left ventricle and left atrium. PH-LHD is the most common cause of PH, accounting for 65-80 % of diagnoses. Based on the haemodynamic phase of the disease, PH-LDH is classified into three subgroups: postcapillary PH, isolated postcapillary PH and combined pre-postcapillary PH (CpcPH). Several signaling pathways involved in the regulation of vascular tone are dysfunctional in PH-LHD, including nitric oxide, MAP kinase and endothelin-1 pathways. These pathways are the same as those altered in PH group 1, however PH-LHD can heardly be treated by specific drugs that act on the pulmonary circulation. In this manuscript we provide a state of the art of the available clinical trials investigating the safety and efficacy of PAH-specific drugs, as well as drugs active in patients with heart failure and PH-LHD. We also discuss the different phenotypes of PH-LHD, as well as molecular targets and signaling pathways potentially involved in the pathophysiology of the disease. Finally we will mention some new emerging therapies that can be used to treat this form of PH.

2.
Biomed Pharmacother ; 178: 117278, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39116784

ABSTRACT

BACKGROUND: Empagliflozin (EMPA), a selective sodium-glucose cotransporter type 2 (SGLT2) inhibitor, has been shown to reduce major adverse cardiovascular events in patients with heart failure of different etiologies, although the underlying mechanism still remains unclear. Ponatinib (PON) is a multi-tyrosine kinase inhibitor successfully used against myeloid leukemia and other human malignancies, but its cardiotoxicity remains worrisome. Cardiac connexins (Cxs) are both substrates and regulators of autophagy and responsible for proper heart function. Alteration in connexin expression and localization have been described in patients with heart failure. AIMS: To assess whether EMPA can mitigate PON-induced cardiac dysfunction by restoring the connexin 43-autophagy pathway. METHODS AND RESULTS: Male C57BL/6 mice, randomized into four treatment groups (CNTRL, PON, EMPA, PON+EMPA) for 28 days, showed increased autophagy, decreased Cx43 expression as well as Cx43 lateralization, and attenuated systo-diastolic cardiac dysfunction after treatment with EMPA and PON compared with PON alone. Compared with CNTRL (DMSO), cardiomyocyte-differentiated H9c2 (dH9c2) cells treated with PON showed significantly reduced cell viability to approximately 20 %, decreased autophagy, increased cell senescence and reduced DNA binding activity of serum response factor (SRF) to serum response elements (SRE), which were paralleled by reduction in cardiac actin expression. Moreover, PON induced a significant increase of Cx43 protein and its S368-phosphorylated form (pS368-Cx43), as well as their displacement from the plasma membrane to the perinuclear and nuclear cellular region. All these effects were reverted by EMPA. CONCLUSION: EMPA attenuates PON-induced cardiotoxicity by reducing senescence, enhancing the SRE-SRF binding and restoring the connexin 43-autophagy pathway. This effect may pave the way to use of SGLT2 inhibitors in attenuating tyrosine-kinase inhibitor cardiotoxicity.

4.
Biomed Pharmacother ; 175: 116650, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38678962

ABSTRACT

Sodium-glucose cotransporter 2 inhibitors (SGLT2i), a new class of glucose-lowering drugs traditionally used to control blood glucose levels in patients with type 2 diabetes mellitus, have been proven to reduce major adverse cardiovascular events, including cardiovascular death, in patients with heart failure irrespective of ejection fraction and independently of the hypoglycemic effect. Because of their favorable effects on the kidney and cardiovascular outcomes, their use has been expanded in all patients with any combination of diabetes mellitus type 2, chronic kidney disease and heart failure. Although mechanisms explaining the effects of these drugs on the cardiovascular system are not well understood, their effectiveness in all these conditions suggests that they act at the intersection of the metabolic, renal and cardiac axes, thus disrupting maladaptive vicious cycles while contrasting direct organ damage. In this systematic review we provide a state of the art of the randomized controlled trials investigating the effect of SGLT2i on cardiovascular outcomes in patients with chronic kidney disease and/or heart failure irrespective of ejection fraction and diabetes. We also discuss the molecular targets and signaling pathways potentially explaining the cardiac effects of these pharmacological agents, from a clinical and experimental perspective.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Humans , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/metabolism , Animals , Heart Failure/drug therapy , Heart Failure/metabolism , Heart Failure/physiopathology , Treatment Outcome , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/metabolism , Randomized Controlled Trials as Topic , Blood Glucose/metabolism , Blood Glucose/drug effects
5.
Cardiovasc Res ; 120(2): 132-139, 2024 03 13.
Article in English | MEDLINE | ID: mdl-38242632

ABSTRACT

The chromogranin-secretogranin secretory proteins-granins-are acidic proteins localized in granules of endocrine cells and neurons. The chromogranin family includes chromogranins A (CgA) and B, as well as secretogranin II (once called chromogranin C). Members of this family undergo catalytic proteolysis to produce active peptides. The CgA-derived peptides vasostatin-1 and vasostatin-2, in particular, appear to protect against atherosclerosis, suppressing the expression of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1, as well as exerting vasodilatory effects by enhancing nitric oxide bioavailability. Vasostatin-1 also suppresses vasoconstriction and abnormal angiogenesis. Vasostatin-1 and vasostatin-2 may be novel therapeutic targets for atherosclerosis and coronary heart disease, also protecting the myocardium against ischaemic damage.


Subject(s)
Atherosclerosis , Calreticulin , Chromogranins , Peptide Fragments , Humans , Chromogranins/chemistry , Chromogranins/metabolism , Angiogenesis , Proteins/metabolism , Peptides
6.
Vascul Pharmacol ; 153: 107223, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37678516

ABSTRACT

With the improvement in cancer prognosis due to advances in antitumor therapeutic protocols and new targeted and immunotherapies, we are witnessing a growing increase in survival, however, at the same timeincrease in morbidity among cancer survivors as a consequences of the increased cardiovascular adverse effects of antineoplastic drugs. Common cardiovascular complications of antineoplastic therapies may include cardiac complications such as arrhythmias, myocardial ischemia, left ventricular dysfunction culminating in heart failure as well as vascular complications including arterial hypertension, thromboembolic events, and accelerated atherosclerosis. The toxicity results from the fact that these drugs not only target cancer cells but also affect normal cells within the cardiovascular system. In this article, we review the clinical features and main mechanisms implicated in antineoplastic drug-induced cardiovascular toxicity, including oxidative stress, inflammation, immunothrombosis and growth factors-induced signaling pathways.


Subject(s)
Antineoplastic Agents , Heart Diseases , Heart Failure , Neoplasms , Humans , Cardiotoxicity/drug therapy , Cardiotoxicity/etiology , Antineoplastic Agents/adverse effects , Heart , Heart Diseases/chemically induced , Neoplasms/drug therapy , Neoplasms/complications
7.
J Clin Med ; 12(6)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36983398

ABSTRACT

Vascular progenitor cells are activated to repair and form a neointima following vascular damage such as hypertension, atherosclerosis, diabetes, trauma, hypoxia, primary cancerous lesions and metastases as well as catheter interventions. They play a key role not only in the resolution of the vascular lesion but also in the adult neovascularization and angiogenesis sprouting (i.e., the growth of new capillaries from pre-existing ones), often associated with carcinogenesis, favoring the formation of metastases, survival and progression of tumors. In this review, we discuss the biology, cellular plasticity and pathophysiology of different vascular progenitor cells, including their origins (sources), stimuli and activated pathways that induce differentiation, isolation and characterization. We focus on their role in tumor-induced vascular injury and discuss their implications in promoting tumor angiogenesis during cancer proliferation and migration.

8.
Cardiovasc Res ; 119(5): 1175-1189, 2023 05 22.
Article in English | MEDLINE | ID: mdl-36627733

ABSTRACT

AIMS: Sodium-glucose cotransporter 2 inhibitors have beneficial effects on heart failure and cardiovascular mortality in diabetic and non-diabetic patients, with unclear mechanisms. Autophagy is a cardioprotective mechanism under acute stress conditions, but excessive autophagy accelerates myocardial cell death leading to autosis. We evaluated the protective role of empagliflozin (EMPA) against cardiac injury in murine diabetic cardiomyopathy. METHODS AND RESULTS: Male mice, rendered diabetics by one single intraperitoneal injection of streptozotocin and treated with EMPA (30 mg/kg/day), had fewer apoptotic cells (4.9 ± 2.1 vs. 1 ± 0.5 TUNEL-positive cells %, P < 0.05), less senescence (10.1 ± 2 vs. 7.9 ± 1.2 ß-gal positivity/tissue area, P < 0.05), fibrosis (0.2 ± 0.05 vs. 0.15 ± 0.06, P < 0.05 fibrotic area/tissue area), autophagy (7.9 ± 0.05 vs. 2.3 ± 0.6 fluorescence intensity/total area, P < 0.01), and connexin (Cx)-43 lateralization compared with diabetic mice. Proteomic analysis showed a down-regulation of the 5' adenosine monophosphate-activated protein kinase (AMPK) pathway and upstream activation of sirtuins in the heart of diabetic mice treated with EMPA compared with diabetic mice. Because sirtuin activation leads to the modulation of cardiomyogenic transcription factors, we analysed the DNA binding activity to serum response elements (SRE) of serum response factor (SRF) by electromobility shift assay. Compared with diabetic mice [0.5 ± 0.01 densitometric units (DU)], non-diabetic mice treated with EMPA (2.2 ± 0.01 DU, P < 0.01) and diabetic mice treated with EMPA (2.0 ± 0.1 DU, P < 0.01) significantly increased SRF binding activity to SRE, paralleled by increased cardiac actin expression (4.1 ± 0.1 vs. 2.2 ± 0.01 target protein/ß-actin ratio, P < 0.01). EMPA significantly reversed cardiac dysfunction on echocardiography in diabetic mice and inhibited excessive autophagy in high-glucose-treated cardiomyocytes by inhibiting the autophagy inducer glycogen synthase kinase 3 beta (GSK3ß), leading to reactivation of cardiomyogenic transcription factors. CONCLUSION: Taken together, our results describe a novel paradigm in which EMPA inhibits hyperactivation of autophagy through the AMPK/GSK3ß signalling pathway in the context of diabetes.


Subject(s)
Diabetes Mellitus , Diabetic Cardiomyopathies , Mice , Male , Animals , Diabetic Cardiomyopathies/drug therapy , Diabetic Cardiomyopathies/etiology , Diabetic Cardiomyopathies/prevention & control , AMP-Activated Protein Kinases/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Proteomics , Myocytes, Cardiac/metabolism , Transcription Factors/metabolism , Glucose/metabolism , Autophagy , Diabetes Mellitus/metabolism
9.
Life (Basel) ; 12(9)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36143389

ABSTRACT

T1AM, a derivative of thyroid hormones, and its major catabolite, TA1, produce effects on memory acquisition in rodents. In the present study, we compared the effects of exogenous T1AM and TA1 on protein belonging to signal transduction pathways, assuming that TA1 may strengthen T1AM's effects in brain tissue. A hybrid line of cancer cells of mouse neuroblastoma and rat glioma (NG 108-15), as well as a human glioblastoma cell line (U-87 MG) were used. We first characterized the in vitro model by analyzing gene expression of proteins involved in the glutamatergic cascade and cellular uptake of T1AM and TA1. Then, cell viability, glucose consumption, and protein expression were assessed. Both cell lines expressed receptors implicated in glutamatergic pathway, namely Nmdar1, Glur2, and EphB2, but only U-87 MG cells expressed TAAR1. At pharmacological concentrations, T1AM was taken up and catabolized to TA1 and resulted in more cytotoxicity compared to TA1. The major effect, highlighted in both cell lines, albeit on different proteins involved in the glutamatergic signaling, was an increase in phosphorylation, exerted by T1AM but not reproduced by TA1. These findings indicate that, in our in vitro models, T1AM can affect proteins involved in the glutamatergic and other signaling pathways, but these effects are not strengthened by TA1.

10.
J Biomed Mater Res A ; 109(11): 2322-2333, 2021 11.
Article in English | MEDLINE | ID: mdl-33960131

ABSTRACT

Gravity alterations elicit complex and mostly detrimental effects on biological systems. Among these, a prominent role is occupied by oxidative stress, with consequences for tissue homeostasis and development. Studies in altered gravity are relevant for both Earth and space biomedicine, but their implementation using whole organisms is often troublesome. Here we utilize planarians, simple worm model for stem cell and regeneration biology, to characterize the pathogenic mechanisms brought by artificial gravity alterations. In particular, we provide a comprehensive evaluation of molecular responses in intact and regenerating specimens, and demonstrate a protective action from the space-apt for nanotechnological antioxidant cerium oxide nanoparticles.


Subject(s)
Cerium , Gravity, Altered , Nanoparticles/chemistry , Planarians/metabolism , Regeneration/drug effects , Animals , Cerium/chemistry , Cerium/pharmacology
11.
Horm Mol Biol Clin Investig ; 41(1)2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32114521

ABSTRACT

Background 3-Iodothyronamine (T1AM) is an endogenous messenger chemically related to thyroid hormone. Recent results indicate significant transcriptional effects of chronic T1AM administration involving the protein family of sirtuins, which regulate important metabolic pathways and tumor progression. Therefore, the aim of this work was to compare the effect of exogenous T1AM and 3,5,3'-triiodo-L-thyronine (T3) chronic treatment on mammalian sirtuin expression in hepatocellular carcinoma cells (HepG2) and in primary rat hepatocytes at micromolar concentrations. Materials and methods Sirtuin (SIRT) activity and expression were determined using a colorimetric assay and Western blot analysis, respectively, in cells treated for 24 h with 1-20 µM T1AM or T3. In addition, cell viability was evaluated by the MTTtest upon 24 h of treatment with 0.1-20 µM T1AM or T3. Results In HepG2, T1AM significantly reduced SIRT 1 (20 µM) and SIRT4 (10-20 µM) protein expression, while T3 strongly decreased the expression of SIRT1 (20 µM) and SIRT2 (any tested concentration). In primary rat hepatocytes, T3 decreased SIRT2 expression and cellular nicotinamide adenine dinucleotide (NAD) concentration, while on sirtuin activity it showed opposite effects, depending on the evaluated cell fraction. The extent of MTT staining was moderately but significantly reduced by T1AM, particularly in HepG2 cells, whereas T3 reduced cell viability only in the tumor cell line. Conclusions T1AM and T3 downregulated the expression of sirtuins, mainly SIRT1, in hepatocytes, albeit in different ways. Differences in mechanisms are only observational, and further investigations are required to highlight the potential role of T1AM and T3 in modulating sirtuin expression and, therefore, in regulating cell cycle or tumorigenesis.


Subject(s)
Sirtuin 1/metabolism , Thyronines/pharmacology , Triiodothyronine/analogs & derivatives , Animals , Cell Survival/drug effects , Cells, Cultured , Down-Regulation/drug effects , Hep G2 Cells , Humans , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Rats , Rats, Wistar , Sirtuin 1/genetics , Sirtuins/genetics , Sirtuins/metabolism , Triiodothyronine/pharmacology
12.
Thyroid ; 30(1): 147-160, 2020 01.
Article in English | MEDLINE | ID: mdl-31709926

ABSTRACT

Background: A novel form of thyroid hormone (TH) signaling is represented by 3-iodothyronamine (T1AM), an endogenous TH derivative that interacts with specific molecular targets, including trace amine-associated receptor 1 (TAAR1), and induces pro-learning and anti-amnestic effects in mice. Dysregulation of TH signaling has long been hypothesized to play a role in Alzheimer's disease (AD). In the present investigation, we explored the neuroprotective role of T1AM in beta amyloid (Aß)-induced synaptic and behavioral impairment, focusing on the entorhinal cortex (EC), an area that is affected early by AD pathology. Methods: Field potentials were evoked in EC layer II, and long-term potentiation (LTP) was elicited by high frequency stimulation (HFS). T1AM (5 µM) and/or Aß(1-42) (200 nM), were administered for 10 minutes, starting 5 minutes before HFS. Selective TAAR1 agonist RO5166017 (250 nM) and TAAR1 antagonist EPPTB (5 nM) were also used. The electrophysiological experiments were repeated in EC-slices taken from a mouse model of AD (mutant human amyloid precursor protein [mhAPP], J20 line). We also assessed the in vivo effects of T1AM on EC-dependent associative memory deficits, which were detected in mhAPP mice by behavioral evaluations based on the novel-object recognition paradigm. TAAR1 expression was determined by Western blot, whereas T1AM and its metabolite 3-iodothyroacetic acid (TA1) were assayed by high-performance liquid chromatography coupled to mass spectrometry. Results: We demonstrate the presence of endogenous T1AM and TAAR1 in the EC of wild-type and mhAPP mice. Exposure to Aß(1-42) inhibited LTP, and T1AM perfusion (at a concentration of 5 µM, leading to an actual concentration in the perfusion buffer ranging from 44 to 298 nM) restored it, whereas equimolar amounts of 3,5,3'-triiodo-L-thyronine (T3) and TA1 were ineffective. The response to T1AM was abolished by the TAAR1 antagonist EPPTB, whereas it was mimicked by the TAAR1 agonist RO5166017. In the EC of APPJ20 mice, LTP could not be elicited, but it was rescued by T1AM. The intra-cerebro-ventricular administration of T1AM (0.89 µg/kg) also restored recognition memory that was impaired in mhAPP mice. Conclusions: Our results suggest that T1AM and TAAR1 are part of an endogenous system that can be modulated to prevent synaptic and behavioral deficits associated with Aß-related toxicity.


Subject(s)
Amyloid beta-Peptides/pharmacology , Entorhinal Cortex/drug effects , Evoked Potentials/drug effects , Peptide Fragments/pharmacology , Thyronines/pharmacology , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Disease Models, Animal , Entorhinal Cortex/physiology , Evoked Potentials/physiology , Mice , Mice, Transgenic
13.
Article in English | MEDLINE | ID: mdl-30837954

ABSTRACT

3,5-diiodo-L-thyronine (3,5-T2) is an endogenous derivative of thyroid hormone with potential metabolic effects. It has been detected in human blood by immunological methods, but a reliable assay based on mass spectrometry (MS), which is now regarded as the gold standard in clinical chemistry, is not available yet. Therefore, we aimed at developing a novel ad-hoc optimized method to quantitate 3,5-T2 and its isomers by MS in human serum. Serum samples were obtained from 28 healthy subjects. Two ml of serum were deproteinized with acetonitrile and then subjected to an optimized solid phase extraction-based procedure. To lower background noise, the samples were furtherly cleaned by hexane washing and acetonitrile precipitation of residual proteins. 3,5-T2 and its isomers 3,3'-T2 and 3',5'-T2 were then analyzed by HPLC coupled to tandem MS. Accuracy and precision for T2 assay were 88-104% and 95-97%, respectively. Recovery and matrix effect averaged 78% and +8%, respectively. 3,5-T2 was detected in all samples and its concentration averaged (mean ± SEM) 41 ± 5 pg/ml, i.e., 78 ± 9 pmol/l. In the same samples the concentration of 3,3'-T2 averaged 133±15 pg/ml, i.e., 253±29 pmol/l, while 3',5'-T2 was not detected. 3,5-T2 concentration was significantly related to 3,3'-T2 concentration (r = 0.540, P < 0.01), while no significant correlation was observed with either T3 or T4 in a subset of patients in which these hormones were assayed. In conclusion, our method is able to quantify 3,5-T2 and 3,3'-T2 in human serum. Their concentrations lie in the subnanomolar range, and a significant correlation was detected between these two metabolites in healthy individuals.

14.
Brain Res ; 1700: 19-30, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30420052

ABSTRACT

The present study was undertaken because no previous developmental studies exist on MCH neurons in any avian species. After validating a commercially-available antibody for use in chickens, immunohistochemical examinations first detected MCH neurons around embryonic day (E) 8 in the posterior hypothalamus. This population increased thereafter, reaching a numerical maximum by E20. MCH-positive cell bodies were found only in the posterior hypothalamus at all ages examined, restricted to a region showing very little overlap with the locations of hypocretin/orexin (H/O) neurons. Chickens had fewer MCH than H/O neurons, and MCH neurons also first appeared later in development than H/O neurons (the opposite of what has been found in rodents). MCH neurons appeared to originate from territories within the hypothalamic periventricular organ that partially overlap with the source of diencephalic serotonergic neurons. Chicken MCH fibers developed exuberantly during the second half of embryonic development, and they became abundant in the same brain areas as in rodents, including the hypothalamus (by E12), locus coeruleus (by E12), dorsal raphe nucleus (by E20) and septum (by E20). These observations suggest that MCH cells may play different roles during development in chickens and rodents; but once they have developed, MCH neurons exhibit similar phenotypes in birds and rodents.


Subject(s)
Avian Proteins/metabolism , Brain/cytology , Brain/embryology , Hypothalamic Hormones/metabolism , Melanins/metabolism , Neurons/cytology , Neurons/metabolism , Pituitary Hormones/metabolism , Animals , Brain/metabolism , Chick Embryo
15.
Article in English | MEDLINE | ID: mdl-29899732

ABSTRACT

3,5-diiodo-l-thyronine (T2) is an endogenous derivative of thyroid hormone that has been suggested to regulate energy expenditure, resting metabolic rate and oxygen consumption with a mechanism that involves the activation of mitochondrial function. In this study, we focused on the cardiac effects of T2, which have been poorly investigated so far, by using both in vitro and ex vivo models. As a comparison, the response to T3 and T4 was also determined. Rat cardiomyoblasts (H9c2 cells) were used to determine T2, T3, and T4 uptake by high-performance liquid chromatography-tandem mass spectrometry. In the same experimental model, MTT test, crystal violet staining, and glucose consumption were investigated, using T2 concentrations ranging from 0.1 to 10 µM. To assess cardiac functional effects, isolated working rat hearts were perfused with T2, T3, or T4 in Krebs-Ringer buffer, and the hemodynamic variables were recorded. T2 was taken up by cardiomyoblasts, and in cell lysate T2 levels increased slowly over time, reaching higher concentrations than in the incubation medium. T2 significantly decreased MTT staining at 0.5-10 µM concentration (P < 0.05). Crystal violet staining confirmed a reduction of cell viability only upon treatment with 10 µM T2, while equimolar T3 and T4 did not share this effect. Glucose consumption was also significantly affected as indicated by glucose uptake being increased by 24 or 35% in cells exposed to 0.1 or 1.0 µM T2 (P < 0.05 in both cases). On the contrary, T3 did not affect glucose consumption which, in turn, was significantly reduced by 1 and 10 µM T4 (-24 and -41% vs control, respectively, P < 0.05 and P < 0.01). In the isolated perfused rat heart, 10 µM T2 produced a slight and transient reduction in cardiac output, while T3 and T4 did not produce any hemodynamic effect. Our findings indicate that T2 is taken up by cardiomyoblasts, and at 0.1-1.0 µM concentration it can modulate cardiac energy metabolism by increasing glucose consumption. Some evidence of toxicity and a transient impairment of contractile performance are observed only at 10 µM concentration. These effects appear to be specific for T2, since they are not reproduced by T3 or T4.

16.
Int J Mol Sci ; 19(5)2018 May 22.
Article in English | MEDLINE | ID: mdl-29786646

ABSTRACT

Obesity is a complex disease associated with environmental and genetic factors. 3-Iodothyronamine (T1AM) has revealed great potential as an effective weight loss drug. We used metabolomics and associated transcriptional gene and protein expression analysis to investigate the tissue specific metabolic reprogramming effects of subchronic T1AM treatment at two pharmacological daily doses (10 and 25 mg/kg) on targeted metabolic pathways. Multi-analytical results indicated that T1AM at 25 mg/kg can act as a novel master regulator of both glucose and lipid metabolism in mice through sirtuin-mediated pathways. In liver, we observed an increased gene and protein expression of Sirt6 (a master gene regulator of glucose) and Gck (glucose kinase) and a decreased expression of Sirt4 (a negative regulator of fatty acids oxidation (FAO)), whereas in white adipose tissue only Sirt6 was increased. Metabolomics analysis supported physiological changes at both doses with most increases in FAO, glycolysis indicators and the mitochondrial substrate, at the highest dose of T1AM. Together our results suggest that T1AM acts through sirtuin-mediated pathways to metabolically reprogram fatty acid and glucose metabolism possibly through small molecules signaling. Our novel mechanistic findings indicate that T1AM has a great potential as a drug for the treatment of obesity and possibly diabetes.


Subject(s)
Anti-Obesity Agents/pharmacology , Mitochondrial Proteins/genetics , Obesity/metabolism , Sirtuins/genetics , Thyronines/pharmacology , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Animals , Anti-Obesity Agents/therapeutic use , Fatty Acids/metabolism , Female , Germinal Center Kinases , Glucose/metabolism , Glycolysis , Liver/drug effects , Liver/metabolism , Mice , Mitochondrial Proteins/metabolism , Obesity/drug therapy , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Sirtuins/metabolism , Thyronines/therapeutic use
17.
Thyroid ; 27(10): 1323-1331, 2017 10.
Article in English | MEDLINE | ID: mdl-28859548

ABSTRACT

BACKGROUND: Difficulties have been reported in quantitating 3-iodothyronamine (T1AM) in blood or serum, and tentatively attributed to problems in extraction or other pre-analytical steps. For this reason, even cell culture experiments have often be performed with unphysiological protein-free media. The aim of this study was to evaluate the recovery of exogenous T1AM added to a standard cell culture medium, namely Dulbecco's minimum essential medium (DMEM) supplemented with fetal bovine serum (FBS), and to other biological matrixes. METHODS: Cell culture media (Krebs-Ringer buffer, DMEM, FBS, DMEM + FBS, used either in the absence or in the presence of NG108-15 cells) and other biological matrixes (rat brain and liver homogenates, human plasma, and blood) were spiked with T1AM and/or deuterated T1AM (d4-T1AM) and incubated for times ranging from 0 to 240 minutes. Samples were then extracted using a liquid/liquid method and analyzed using liquid chromatography coupled to mass spectrometry in order to assay T1AM and its metabolites, namely 3-iodothyroacetic acid (TA1), thyronamine, thyroacetic acid, N-acetyl-T1AM, and T1AM esters. RESULTS: In FBS-containing buffers, T1AM decreased exponentially over time, with a half-life of 6-17 minutes, depending on FBS content, and after 60 minutes, it averaged 0-10% of the baseline. T1AM metabolites were not detected, except for minimum amounts of TA1. Notably, d4-T1AM decreased over time at a much lower rate, reaching 50-70% of the baseline at 60 minutes. These effects were completely abolished by protein denaturation and partly reduced by semicarbazide. In the presence of cells, T1AM concentration decreased virtually to 0 within 60 minutes, but TA1 accumulated in the incubation medium, with quantitative recovery. Spontaneous decrease in T1AM concentration with isotopic difference was confirmed in rat organ homogenates and human blood. CONCLUSIONS: These results suggest binding and sequestration of T1AM and/or its aldehyde derivative by blood and tissue proteins, with significant isotope effects. These issues might account for the technical problems complicating the analytical assays of endogenous T1AM.


Subject(s)
Thyronines/analysis , Animals , Cell Line, Tumor , Culture Media , Half-Life , Mass Spectrometry , Mice , Rats
18.
J Cardiovasc Pharmacol ; 64(6): 507-13, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25490416

ABSTRACT

: We used the isolated working rat model to evaluate the effect of therapeutic concentrations (5-10 µM) of ranolazine on contractile performance, oxygen consumption, irreversible ischemic injury, and sarcoplasmic reticulum (SR) function. Ischemic injury was induced by 30 minutes of global ischemia followed by 120 minutes of Langendorff reperfusion and evaluated on the basis of triphenyltetrazolium chloride staining. SR function was determined on the basis of [H]-ryanodine binding, the kinetics of calcium-induced calcium release, measured by quick filtration technique, and oxalate-supported calcium uptake. In working hearts, ranolazine significantly reduced oxygen consumption (P = 0.031), in the absence of significant changes in contractile performance, and decreased irreversible ischemic injury (P = 0.011), if administered either before ischemia-reperfusion (25.4% ± 4.7% vs. 42.7% ± 6.0%) or only at the time of reperfusion (20.2% ± 5.2% vs. 43.7% ± 9.9%). In SR experiments, treatment with ranolazine determined a significant reduction in [H]-ryanodine binding (P = 0.029), because of decreased binding site density (369 ± 9 vs. 405 ± 12 fmol/mg), and in the kinetics of SR calcium release (P = 0.011), whose rate constant was decreased, whereas active calcium uptake was not affected. Ranolazine effectiveness at reperfusion and its ability to module SR calcium release suggest that this drug might be particularly useful to induce cardioprotection during coronary revascularization interventions, although the relevance of the effects on calcium homeostasis remains to be determined.


Subject(s)
Acetanilides/pharmacology , Calcium/metabolism , Cardiotonic Agents/pharmacology , Myocardial Reperfusion Injury/drug therapy , Piperazines/pharmacology , Acetanilides/administration & dosage , Animals , Cardiotonic Agents/administration & dosage , Disease Models, Animal , Dose-Response Relationship, Drug , Male , Myocardial Reperfusion Injury/physiopathology , Oxygen Consumption/drug effects , Piperazines/administration & dosage , Ranolazine , Rats , Rats, Wistar , Ryanodine/metabolism , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/metabolism
19.
J Endocrinol ; 221(1): 101-10, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24627446

ABSTRACT

3-Iodothyronamine (T1AM) is an endogenous relative of thyroid hormone with profound metabolic effects. In different experimental models, T1AM increased blood glucose, and it is not clear whether this effect is entirely accounted by changes in insulin and/or glucagone secretion. Thus, in the present work, we investigated the uptake of T1AM by hepatocytes, which was compared with the uptake of thyroid hormones, and the effects of T1AM on hepatic glucose and ketone body production. Two different experimental models were used: HepG2 cells and perfused rat liver. Thyronines and thyronamines (T0AMs) were significantly taken up by hepatocytes. In HepG2 cells exposed to 1 µM T1AM, at the steady state, the cellular concentration of T1AM exceeded the medium concentration by six- to eightfold. Similar accumulation occurred with 3,5,3'-triiodothyronine and thyroxine. Liver experiments confirmed significant T1AM uptake. T1AM was partly catabolized and the major catabolites were 3-iodothyroacetic acid (TA1) (in HepG2 cells) and T0AM (in liver). In both preparations, infusion with 1 µM T1AM produced a significant increase in glucose production, if adequate gluconeogenetic substrates were provided. This effect was dampened at higher concentration (10 µM) or in the presence of the amine oxidase inhibitor iproniazid, while TA1 was ineffective, suggesting that T1AM may have a direct gluconeogenetic effect. Ketone body release was significantly increased in liver, while variable results were obtained in HepG2 cells incubated with gluconeogenetic substrates. These findings are consistent with the stimulation of fatty acid catabolism, and a shift of pyruvate toward gluconeogenesis. Notably, these effects are independent from hormonal changes and might have physiological and pathophysiological importance.


Subject(s)
Hepatocytes/metabolism , Thyronines/metabolism , Animals , Biological Transport , Fatty Acids, Nonesterified/metabolism , Glucose/metabolism , Hep G2 Cells , Humans , Ketone Bodies/metabolism , Liver/metabolism , Male , Rats , Rats, Wistar
20.
Cell Biochem Biophys ; 68(1): 37-47, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23723010

ABSTRACT

3-Iodothyronamine (T1AM) is regarded as a hormone-like substance thanks to its endogenous nature, its interaction with specific receptors trace amine-associated receptor 1 and its biological effects. We characterized T1AM transport and conversion in an in vitro culture of H9c2 murine cells, after a T1AM bolus injection. Samples of cell medium culture and cell lysate were assayed by high-performance liquid chromatography coupled to tandem mass spectrometry. We performed comparative experiments by adding to T1AM bolus amino oxidase inhibitors as iproniazid, pargyline (monoamine oxidase, MAO inhibitors), aminoguanidine, and semicarbazide (semicarbazide-sensitive amino oxidase, SSAO inhibitors). A mathematical model was developed, based on the assumption that T1AM is transported with a mechanism that is typical of hormone transport (i.e., EGF or insulin). We noticed that surface receptors downregulation could play a major role in T1AM dynamics. We also estimated that T1AM catabolism is mainly affected by MAO inhibitors, which produce a dramatic decrease in the kinetic constants related to T1AM degradation, while no significant changes were observed in experiments with SSAO inhibitors.


Subject(s)
Models, Theoretical , Thyronines/metabolism , Amine Oxidase (Copper-Containing)/antagonists & inhibitors , Amine Oxidase (Copper-Containing)/metabolism , Animals , Biological Transport/drug effects , Cell Adhesion Molecules/antagonists & inhibitors , Cell Adhesion Molecules/metabolism , Cell Line , Epidermal Growth Factor/metabolism , Guanidines/pharmacology , Insulin/metabolism , Iproniazid/pharmacology , Mice , Monoamine Oxidase/chemistry , Monoamine Oxidase/metabolism , Myoblasts/cytology , Myoblasts/drug effects , Pargyline/pharmacology , Semicarbazides/pharmacology , Thyronines/chemical synthesis , Thyronines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL