Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Healthc Mater ; : e2302836, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38299437

ABSTRACT

Sustained inflammation can halt or delay wound healing, and macrophages play a central role in wound healing. Inflammatory macrophages are responsible for the removal of pathogens, debris, and neutrophils, while anti-inflammatory macrophages stimulate various regenerative processes. Recombinant human Proteoglycan 4 (rhPRG4) is shown to modulate macrophage polarization and to prevent fibrosis and scarring in ear wound healing. Here, dissolvable microneedle arrays (MNAs) carrying rhPRG4 are engineered for the treatment of skin wounds. The in vitro experiments suggest that rhPRG4 modulates the inflammatory function of bone marrow-derived macrophages. Degradable and detachable microneedles are developed from gelatin methacryloyl (GelMA) attach to a dissolvable gelatin backing. The developed MNAs are able to deliver a high dose of rhPRG4 through the dissolution of the gelatin backing post-injury, while the GelMA microneedles sustain rhPRG4 bioavailability over the course of treatment. In vivo results in a murine model of full-thickness wounds with impaired healing confirm a decrease in inflammatory biomarkers such as TNF-α and IL-6, and an increase in angiogenesis and collagen deposition. Collectively, these results demonstrate rhPRG4-incorporating MNA is a promising platform in skin wound healing applications.

2.
Small ; 19(29): e2207131, 2023 07.
Article in English | MEDLINE | ID: mdl-37026428

ABSTRACT

Microneedles have recently emerged as a powerful tool for minimally invasive drug delivery and body fluid sampling. To date, high-resolution fabrication of microneedle arrays (MNAs) is mostly achieved by the utilization of sophisticated facilities and expertise. Particularly, hollow microneedles have usually been manufactured in cleanrooms out of silicon, resin, or metallic materials. Such strategies do not support the fabrication of microneedles from biocompatible/biodegradable materials and limit the capability of multimodal drug delivery for the controlled release of different therapeutics through a combination of injection and sustained diffusion. This study implements low-cost 3D printers to fabricate relatively large needle arrays, followed by repeatable shrink-molding of hydrogels to form high-resolution molds for solid and hollow MNAs with controllable sizes. The developed strategy further enables modulating surface topography of MNAs to tailor their surface area and instantaneous wettability for controllable drug delivery and body fluid sampling. Hybrid gelatin methacryloyl (GelMA)/polyethylene glycol diacrylate (PEGDA) MNAs are fabricated using the developed strategy that can easily penetrate the skin and enable multimodal drug delivery. The proposed method holds promise for affordable, controllable, and scalable fabrication of MNAs by researchers and clinicians for controlled spatiotemporal administration of therapeutics and sample collection.


Subject(s)
Drug Delivery Systems , Skin , Administration, Cutaneous , Microinjections/methods , Drug Delivery Systems/methods , Biocompatible Materials
3.
Biofabrication ; 15(2)2023 02 28.
Article in English | MEDLINE | ID: mdl-36787632

ABSTRACT

Bioprinting facilitates the generation of complex, three-dimensional (3D), cell-based constructs for various applications. Although multiple bioprinting technologies have been developed, extrusion-based systems have become the dominant technology due to the diversity of materials (bioinks) that can be utilized, either individually or in combination. However, each bioink has unique material properties and extrusion characteristics that affect bioprinting utility, accuracy, and precision. Here, we have extended our previous work to achieve high precision (i.e. repeatability) and printability across samples by optimizing bioink-specific printing parameters. Specifically, we hypothesized that a fuzzy inference system (FIS) could be used as a computational method to address the imprecision in 3D bioprinting test data and uncover the optimal printing parameters for a specific bioink that result in high accuracy and precision. To test this hypothesis, we have implemented a FIS model consisting of four inputs (bioink concentration, printing flow rate, speed, and temperature) and two outputs to quantify the precision (scaffold bioprinted linewidth variance) and printability. We validate our use of the bioprinting precision index with both standard and normalized printability factors. Finally, we utilize optimized printing parameters to bioprint scaffolds containing up to 30 × 106cells ml-1with high printability and precision. In total, our results indicate that computational methods are a cost-efficient measure to improve the precision and robustness of extrusion 3D bioprinting.


Subject(s)
Bioprinting , Printing, Three-Dimensional , Technology , Bioprinting/methods , Tissue Engineering , Tissue Scaffolds
4.
Adv Nanobiomed Res ; 2(4)2022 Apr.
Article in English | MEDLINE | ID: mdl-35935166

ABSTRACT

Bone defects, with second highest demand for surgeries around the globe, may lead to serious health issues and negatively influence patient lives. The advances in biomedical engineering and sciences have led to the development of several creative solutions for bone defect treatment. This review provides a brief summary of bone graft materials, an organized overview of top-down and bottom-up (bio)manufacturing approaches, plus a critical comparison between advantages and limitations of each method. We specifically discuss additive manufacturing techniques and their operation mechanisms in detail. Next, we review the hybrid methods and promising future directions for bone grafting, while giving a comprehensive US-FDA regulatory science perspective, biocompatibility concepts and assessments, and clinical considerations to translate a technology from a research laboratory to the market. The topics covered in this review could potentially fuel future research efforts in bone tissue engineering, and perhaps could also provide novel insights for other tissue engineering applications.

5.
Article in English | MEDLINE | ID: mdl-33855191

ABSTRACT

Silicon-based implantable neural devices have great translational potential as a means to deliver various treatments for neurological disorders. However, they are currently held back by uncertain longevity following chronic exposure to body fluids. Conventional deposition techniques cover only the horizontal surfaces which contain active electronics, electrode sites, and conducting traces. As a result, a vast majority of today's silicon devices leave their vertical sidewalls exposed without protection. In this work, we investigated two batch-process silicon dioxide deposition methods separately and in combination: atomic layer deposition and inductively-coupled plasma chemical vapor deposition. We then utilized a rapid soak test involving potassium hydroxide to evaluate the coverage quality of each protection strategy. Focused ion beam cross sectioning, scanning electron microscopy, and 3D extrapolation enabled us to characterize and quantify the effectiveness of the deposition methods. Results showed that bare silicon sidewalls suffered the most dissolution whereas ALD silicon dioxide provided the best protection, demonstrating its effectiveness as a promising batch process technique to mitigate silicon sidewall corrosion in chronic applications.

6.
J Neural Eng ; 17(5): 056003, 2020 10 08.
Article in English | MEDLINE | ID: mdl-32947274

ABSTRACT

OBJECTIVE: Chronically-implanted neural microelectrodes are powerful tools for neuroscience research and emerging clinical applications, but their usefulness is limited by their tendency to fail after months in vivo. One failure mode is the degradation of insulation materials that protect the conductive traces from the saline environment. APPROACH: Studies have shown that material degradation is accelerated by mechanical stresses, which tend to concentrate on raised topographies such as conducting traces. Therefore, to avoid raised topographies, we developed a fabrication technique that recesses (buries) the traces in dry-etched, self-aligned trenches. MAIN RESULTS: The fabrication technique produced flatness within approximately 15 nm. Finite element modeling showed that the recessed geometry would be expected to reduce intrinsic stress concentrations in the insulation layers. Finally, in vitro electrochemical tests confirmed that recessed traces had robust recording and stimulation capabilities that were comparable to an established non-recessed device design. SIGNIFICANCE: Our recessed trace fabrication technique requires no extra masks, is easy to integrate with existing processes, and is likely to improve the long-term performance of implantable neural devices.


Subject(s)
Silicon , Electric Conductivity , Electrodes, Implanted , Equipment Design , Microelectrodes , Stress, Mechanical
7.
Sens Actuators B Chem ; 3152020 07 15.
Article in English | MEDLINE | ID: mdl-32494111

ABSTRACT

The peripheral nervous system (PNS) is an attractive target for modulation of afferent input (e.g., nociceptive input signaling tissue damage) to the central nervous system. To advance mechanistic understanding of PNS neural encoding and modulation requires single-unit recordings from individual peripheral neurons or axons. This is challenged by multiple connective tissue layers surrounding peripheral nerve fibers that prevent electrical recordings by existing electrodes or electrode arrays. In this study, we developed a novel microelectrode array (MEA) via silicon-based microfabrication that consists of 5 parallel hydrophilic gold electrodes surrounded by silanized hydrophobic surfaces. This novel hydrophilic/hydrophobic surface pattern guides the peripheral nerve filaments to self-align towards the hydrophilic electrodes, which dramatically reduces the technical challenges in conducting single-unit recordings. We validated our MEA by recording simultaneous single-unit action potentials from individual axons in mouse sciatic nerves, including both myelinated A-fibers and unmyelinated C-fibers. We confirmed that our recordings were single units from individual axons by increasing nerve trunk electrical stimulus intensity, which did not alter the spike shape or amplitude. By reducing the technical challenges, our novel MEA will likely allow peripheral single-unit recordings to be adopted by a larger research community and thus expedite our mechanistic understanding of peripheral neural encoding and modulation.

8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 5125-5128, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31947012

ABSTRACT

Implantable microfabricated neural electrodes have numerous neuroscientific research and clinical applications. However, these devices are prone to failure after several months in vivo. One mechanism is failure of passivation layers followed by corrosion of metal traces in the saline environment. It has been suggested that mechanical stress accelerates passivation layer failure and that stress is concentrated whenever passivation layers have a non-planar topography. Therefore, we developed a simple process for recessing metal traces within the substrate so that overlying passivation layers are planar. The process requires no extra masks and no post-passivation planarization steps.


Subject(s)
Electrodes, Implanted , Microelectrodes , Corrosion , Metals , Microtechnology , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...