Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 275
Filter
1.
bioRxiv ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38746388

ABSTRACT

Frontotemporal dementia (FTD) and Alzheimer's disease are the most common forms of early-onset dementia. Dominantly inherited mutations in MAPT , the microtubule-associated protein tau gene, cause FTD and parkinsonism linked to chromosome 17 (FTDP-17). Individuals with FTDP-17 develop abundant filamentous tau inclusions in brain cells. Here we used electron cryo-microscopy to determine the structures of tau filaments from the brains of individuals with MAPT mutations V337M and R406W. Both mutations gave rise to tau filaments with the Alzheimer fold, which consisted of paired helical filaments in all V337M and R406W cases and of straight filaments in two V337M cases. We also identified a new assembly of the Alzheimer fold into triple tau filaments in a V337M case. Filaments assembled from recombinant tau(297-391) with mutation V337M had the Alzheimer fold and showed an increased rate of assembly.

2.
Lancet Neurol ; 23(5): 487-499, 2024 May.
Article in English | MEDLINE | ID: mdl-38631765

ABSTRACT

BACKGROUND: Pick's disease is a rare and predominantly sporadic form of frontotemporal dementia that is classified as a primary tauopathy. Pick's disease is pathologically defined by the presence in the frontal and temporal lobes of Pick bodies, composed of hyperphosphorylated, three-repeat tau protein, encoded by the MAPT gene. MAPT has two distinct haplotypes, H1 and H2; the MAPT H1 haplotype is the major genetic risk factor for four-repeat tauopathies (eg, progressive supranuclear palsy and corticobasal degeneration), and the MAPT H2 haplotype is protective for these disorders. The primary aim of this study was to evaluate the association of MAPT H2 with Pick's disease risk, age at onset, and disease duration. METHODS: In this genetic association study, we used data from the Pick's disease International Consortium, which we established to enable collection of data from individuals with pathologically confirmed Pick's disease worldwide. For this analysis, we collected brain samples from individuals with pathologically confirmed Pick's disease from 35 sites (brainbanks and hospitals) in North America, Europe, and Australia between Jan 1, 2020, and Jan 31, 2023. Neurologically healthy controls were recruited from the Mayo Clinic (FL, USA, or MN, USA between March 1, 1998, and Sept 1, 2019). For the primary analysis, individuals were directly genotyped for the MAPT H1-H2 haplotype-defining variant rs8070723. In a secondary analysis, we genotyped and constructed the six-variant-defined (rs1467967-rs242557-rs3785883-rs2471738-rs8070723-rs7521) MAPT H1 subhaplotypes. Associations of MAPT variants and MAPT haplotypes with Pick's disease risk, age at onset, and disease duration were examined using logistic and linear regression models; odds ratios (ORs) and ß coefficients were estimated and correspond to each additional minor allele or each additional copy of the given haplotype. FINDINGS: We obtained brain samples from 338 people with pathologically confirmed Pick's disease (205 [61%] male and 133 [39%] female; 338 [100%] White) and 1312 neurologically healthy controls (611 [47%] male and 701 [53%] female; 1312 [100%] White). The MAPT H2 haplotype was associated with increased risk of Pick's disease compared with the H1 haplotype (OR 1·35 [95% CI 1·12 to 1·64], p=0·0021). MAPT H2 was not associated with age at onset (ß -0·54 [95% CI -1·94 to 0·87], p=0·45) or disease duration (ß 0·05 [-0·06 to 0·16], p=0·35). Although not significant after correcting for multiple testing, associations were observed at p less than 0·05: with risk of Pick's disease for the H1f subhaplotype (OR 0·11 [0·01 to 0·99], p=0·049); with age at onset for H1b (ß 2·66 [0·63 to 4·70], p=0·011), H1i (ß -3·66 [-6·83 to -0·48], p=0·025), and H1u (ß -5·25 [-10·42 to -0·07], p=0·048); and with disease duration for H1x (ß -0·57 [-1·07 to -0·07], p=0·026). INTERPRETATION: The Pick's disease International Consortium provides an opportunity to do large studies to enhance our understanding of the pathobiology of Pick's disease. This study shows that, in contrast to the decreased risk of four-repeat tauopathies, the MAPT H2 haplotype is associated with an increased risk of Pick's disease in people of European ancestry. This finding could inform development of isoform-related therapeutics for tauopathies. FUNDING: Wellcome Trust, Rotha Abraham Trust, Brain Research UK, the Dolby Fund, Dementia Research Institute (Medical Research Council), US National Institutes of Health, and the Mayo Clinic Foundation.


Subject(s)
Pick Disease of the Brain , Tauopathies , Male , Humans , Female , tau Proteins/metabolism , Pick Disease of the Brain/genetics , Haplotypes , Genetic Association Studies
3.
Nat Chem Biol ; 20(5): 634-645, 2024 May.
Article in English | MEDLINE | ID: mdl-38632492

ABSTRACT

Machine learning methods hold the promise to reduce the costs and the failure rates of conventional drug discovery pipelines. This issue is especially pressing for neurodegenerative diseases, where the development of disease-modifying drugs has been particularly challenging. To address this problem, we describe here a machine learning approach to identify small molecule inhibitors of α-synuclein aggregation, a process implicated in Parkinson's disease and other synucleinopathies. Because the proliferation of α-synuclein aggregates takes place through autocatalytic secondary nucleation, we aim to identify compounds that bind the catalytic sites on the surface of the aggregates. To achieve this goal, we use structure-based machine learning in an iterative manner to first identify and then progressively optimize secondary nucleation inhibitors. Our results demonstrate that this approach leads to the facile identification of compounds two orders of magnitude more potent than previously reported ones.


Subject(s)
Drug Discovery , Machine Learning , Protein Aggregates , alpha-Synuclein , alpha-Synuclein/antagonists & inhibitors , alpha-Synuclein/metabolism , alpha-Synuclein/chemistry , Humans , Drug Discovery/methods , Protein Aggregates/drug effects , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Structure-Activity Relationship
4.
PLoS Pathog ; 20(4): e1012175, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38640117

ABSTRACT

Prions or prion-like aggregates such as those composed of PrP, α-synuclein, and tau are key features of proteinopathies such as prion, Parkinson's and Alzheimer's diseases, respectively. Their presence on solid surfaces may be biohazardous under some circumstances. PrP prions bound to solids are detectable by ultrasensitive real-time quaking-induced conversion (RT-QuIC) assays if the solids can be immersed in assay wells or the prions transferred to pads. Here we show that prion-like seeds can remain detectable on steel wires for at least a year, or even after enzymatic cleaning and sterilization. We also show that contamination of larger objects with pathological seeds of α-synuclein, tau, and PrP can be detected by simply assaying a sampling medium that has been transiently applied to the surface. Human α-synuclein seeds in dementia with Lewy bodies brain tissue were detected by α-synuclein RT-QuIC after drying of tissue dilutions with concentrations as low as 10-6 onto stainless steel. Tau RT-QuIC detected tau seeding activity on steel exposed to Alzheimer's disease brain tissue diluted as much as a billion fold. Prion RT-QuIC assays detected seeding activity on plates exposed to brain dilutions as extreme as 10-5-10-8 from prion-affected humans, sheep, cattle and cervids. Sampling medium collected from surgical instruments used in necropsies of sporadic Creutzfeldt-Jakob disease-infected transgenic mice was positive down to 10-6 dilution. Sensitivity for prion detection was not sacrificed by omitting the recombinant PrP substrate from the sampling medium during its application to a surface and subsequent storage as long as the substrate was added prior to performing the assay reaction. Our findings demonstrate practical prototypic surface RT-QuIC protocols for the highly sensitive detection of pathologic seeds of α-synuclein, tau, and PrP on solid objects.


Subject(s)
Prion Proteins , alpha-Synuclein , tau Proteins , tau Proteins/metabolism , alpha-Synuclein/metabolism , alpha-Synuclein/analysis , Humans , Prion Proteins/metabolism , Animals , Mice , Brain/metabolism , Brain/pathology , Prions/metabolism , Lewy Body Disease/metabolism
5.
medRxiv ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38464214

ABSTRACT

Importance: The chromosome 17q21.31 region, containing a 900 Kb inversion that defines H1 and H2 haplotypes, represents the strongest genetic risk locus in progressive supranuclear palsy (PSP). In addition to H1 and H2, various structural forms of 17q21.31, characterized by the copy number of α, ß, and γ duplications, have been identified. However, the specific effect of each structural form on the risk of PSP has never been evaluated in a large cohort study. Objective: To assess the association of different structural forms of 17q.21.31, defined by the copy numbers of α, ß, and γ duplications, with the risk of PSP and MAPT sub-haplotypes. Design setting and participants: Utilizing whole genome sequencing data of 1,684 (1,386 autopsy confirmed) individuals with PSP and 2,392 control subjects, a case-control study was conducted to investigate the association of copy numbers of α, ß, and γ duplications and structural forms of 17q21.31 with the risk of PSP. All study subjects were selected from the Alzheimer's Disease Sequencing Project (ADSP) Umbrella NG00067.v7. Data were analyzed between March 2022 and November 2023. Main outcomes and measures: The main outcomes were the risk (odds ratios [ORs]) for PSP with 95% CIs. Risks for PSP were evaluated by logistic regression models. Results: The copy numbers of α and ß were associated with the risk of PSP only due to their correlation with H1 and H2, while the copy number of γ was independently associated with the increased risk of PSP. Each additional duplication of γ was associated with 1.10 (95% CI, 1.04-1.17; P = 0.0018) fold of increased risk of PSP when conditioning H1 and H2. For the H1 haplotype, addition γ duplications displayed a higher odds ratio for PSP: the odds ratio increases from 1.21 (95%CI 1.10-1.33, P = 5.47 × 10-5) for H1ß1γ1 to 1.29 (95%CI 1.16-1.43, P = 1.35 × 10-6) for H1ß1γ2, 1.45 (95%CI 1.27-1.65, P = 3.94 × 10-8) for H1ß1γ3, and 1.57 (95%CI 1.10-2.26, P = 1.35 × 10-2) for H1ß1γ4. Moreover, H1ß1γ3 is in linkage disequilibrium with H1c (R2 = 0.31), a widely recognized MAPT sub-haplotype associated with increased risk of PSP. The proportion of MAPT sub-haplotypes associated with increased risk of PSP (i.e., H1c, H1d, H1g, H1o, and H1h) increased from 34% in H1ß1γ1 to 77% in H1ß1γ4. Conclusions and relevance: This study revealed that the copy number of γ was associated with the risk of PSP independently from H1 and H2. The H1 haplotype with more γ duplications showed a higher odds ratio for PSP and were associated with MAPT sub-haplotypes with increased risk of PSP. These findings expand our understanding of how the complex structure at 17q21.31 affect the risk of PSP.

6.
ACS Chem Neurosci ; 15(7): 1581-1595, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38523263

ABSTRACT

Aggregated species of amyloid-ß (Aß) are one of the pathological hallmarks in Alzheimer's disease (AD), and ligands that selectively target different Aß deposits are of great interest. In this study, fluorescent thiophene-based ligands have been used to illustrate the features of different types of Aß deposits found in AD brain tissue. A dual-staining protocol based on two ligands, HS-276 and LL-1, with different photophysical and binding properties, was developed and applied on brain tissue sections from patients affected by sporadic AD or familial AD associated with the PSEN1 A431E mutation. When binding to Aß deposits, the ligands could easily be distinguished for their different fluorescence, and distinct staining patterns were revealed for these two types of AD. In sporadic AD, HS-276 consistently labeled all immunopositive Aß plaques, whereas LL-1 mainly stained cored and neuritic Aß deposits. In the PSEN1 A431E cases, each ligand was binding to specific types of Aß plaques. The ligand-labeled Aß deposits were localized in distinct cortical layers, and a laminar staining pattern could be seen. Biochemical characterization of the Aß aggregates in the individual layers also showed that the variation of ligand binding properties was associated with certain Aß peptide signatures. For the PSEN1 A431E cases, it was concluded that LL-1 was binding to cotton wool plaques, whereas HS-276 mainly stained diffuse Aß deposits. Overall, our findings showed that a combination of ligands was essential to identify distinct aggregated Aß species associated with different forms of AD.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/metabolism , Thiophenes/chemistry , Ligands , Amyloid beta-Peptides/metabolism , Brain/metabolism , Plaque, Amyloid/metabolism
7.
Nat Struct Mol Biol ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553642

ABSTRACT

Adult individuals with Down syndrome (DS) develop Alzheimer disease (AD). Whether there is a difference between AD in DS and AD regarding the structure of amyloid-ß (Aß) and tau filaments is unknown. Here we report the structure of Aß and tau filaments from two DS brains. We found two Aß40 filaments (types IIIa and IIIb) that differ from those previously reported in sporadic AD and two types of Aß42 filaments (I and II) identical to those found in sporadic and familial AD. Tau filaments (paired helical filaments and straight filaments) were identical to those in AD, supporting the notion of a common mechanism through which amyloids trigger aggregation of tau. This knowledge is important for understanding AD in DS and assessing whether adults with DS could be included in AD clinical trials.

8.
Alzheimers Dement ; 20(4): 2680-2697, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38380882

ABSTRACT

INTRODUCTION: Amyloidosis, including cerebral amyloid angiopathy, and markers of small vessel disease (SVD) vary across dominantly inherited Alzheimer's disease (DIAD) presenilin-1 (PSEN1) mutation carriers. We investigated how mutation position relative to codon 200 (pre-/postcodon 200) influences these pathologic features and dementia at different stages. METHODS: Individuals from families with known PSEN1 mutations (n = 393) underwent neuroimaging and clinical assessments. We cross-sectionally evaluated regional Pittsburgh compound B-positron emission tomography uptake, magnetic resonance imaging markers of SVD (diffusion tensor imaging-based white matter injury, white matter hyperintensity volumes, and microhemorrhages), and cognition. RESULTS: Postcodon 200 carriers had lower amyloid burden in all regions but worse markers of SVD and worse Clinical Dementia Rating® scores compared to precodon 200 carriers as a function of estimated years to symptom onset. Markers of SVD partially mediated the mutation position effects on clinical measures. DISCUSSION: We demonstrated the genotypic variability behind spatiotemporal amyloidosis, SVD, and clinical presentation in DIAD, which may inform patient prognosis and clinical trials. HIGHLIGHTS: Mutation position influences Aß burden, SVD, and dementia. PSEN1 pre-200 group had stronger associations between Aß burden and disease stage. PSEN1 post-200 group had stronger associations between SVD markers and disease stage. PSEN1 post-200 group had worse dementia score than pre-200 in late disease stage. Diffusion tensor imaging-based SVD markers mediated mutation position effects on dementia in the late stage.


Subject(s)
Alzheimer Disease , Amyloidosis , Cerebral Small Vessel Diseases , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/genetics , Cerebral Small Vessel Diseases/complications , Diffusion Tensor Imaging , Magnetic Resonance Imaging , Mutation/genetics , Presenilin-1/genetics
9.
medRxiv ; 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38234807

ABSTRACT

Background: Progressive supranuclear palsy (PSP) is a rare neurodegenerative disease characterized by the accumulation of aggregated tau proteins in astrocytes, neurons, and oligodendrocytes. Previous genome-wide association studies for PSP were based on genotype array, therefore, were inadequate for the analysis of rare variants as well as larger mutations, such as small insertions/deletions (indels) and structural variants (SVs). Method: In this study, we performed whole genome sequencing (WGS) and conducted association analysis for single nucleotide variants (SNVs), indels, and SVs, in a cohort of 1,718 cases and 2,944 controls of European ancestry. Of the 1,718 PSP individuals, 1,441 were autopsy-confirmed and 277 were clinically diagnosed. Results: Our analysis of common SNVs and indels confirmed known genetic loci at MAPT, MOBP, STX6, SLCO1A2, DUSP10, and SP1, and further uncovered novel signals in APOE, FCHO1/MAP1S, KIF13A, TRIM24, TNXB, and ELOVL1. Notably, in contrast to Alzheimer's disease (AD), we observed the APOE ε2 allele to be the risk allele in PSP. Analysis of rare SNVs and indels identified significant association in ZNF592 and further gene network analysis identified a module of neuronal genes dysregulated in PSP. Moreover, seven common SVs associated with PSP were observed in the H1/H2 haplotype region (17q21.31) and other loci, including IGH, PCMT1, CYP2A13, and SMCP. In the H1/H2 haplotype region, there is a burden of rare deletions and duplications (P = 6.73×10-3) in PSP. Conclusions: Through WGS, we significantly enhanced our understanding of the genetic basis of PSP, providing new targets for exploring disease mechanisms and therapeutic interventions.

10.
Nature ; 625(7994): 345-351, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38057661

ABSTRACT

Frontotemporal lobar degeneration (FTLD) causes frontotemporal dementia (FTD), the most common form of dementia after Alzheimer's disease, and is often also associated with motor disorders1. The pathological hallmarks of FTLD are neuronal inclusions of specific, abnormally assembled proteins2. In the majority of cases the inclusions contain amyloid filament assemblies of TAR DNA-binding protein 43 (TDP-43) or tau, with distinct filament structures characterizing different FTLD subtypes3,4. The presence of amyloid filaments and their identities and structures in the remaining approximately 10% of FTLD cases are unknown but are widely believed to be composed of the protein fused in sarcoma (FUS, also known as translocated in liposarcoma). As such, these cases are commonly referred to as FTLD-FUS. Here we used cryogenic electron microscopy (cryo-EM) to determine the structures of amyloid filaments extracted from the prefrontal and temporal cortices of four individuals with FTLD-FUS. Surprisingly, we found abundant amyloid filaments of the FUS homologue TATA-binding protein-associated factor 15 (TAF15, also known as TATA-binding protein-associated factor 2N) rather than of FUS itself. The filament fold is formed from residues 7-99 in the low-complexity domain (LCD) of TAF15 and was identical between individuals. Furthermore, we found TAF15 filaments with the same fold in the motor cortex and brainstem of two of the individuals, both showing upper and lower motor neuron pathology. The formation of TAF15 amyloid filaments with a characteristic fold in FTLD establishes TAF15 proteinopathy in neurodegenerative disease. The structure of TAF15 amyloid filaments provides a basis for the development of model systems of neurodegenerative disease, as well as for the design of diagnostic and therapeutic tools targeting TAF15 proteinopathy.


Subject(s)
Frontotemporal Lobar Degeneration , TATA-Binding Protein Associated Factors , Humans , Amyloid/chemistry , Amyloid/metabolism , Amyloid/ultrastructure , Brain Stem/metabolism , Brain Stem/pathology , Cryoelectron Microscopy , Frontotemporal Dementia/etiology , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Frontotemporal Lobar Degeneration/complications , Frontotemporal Lobar Degeneration/metabolism , Frontotemporal Lobar Degeneration/pathology , Motor Cortex/metabolism , Motor Cortex/pathology , Motor Neurons/metabolism , Motor Neurons/pathology , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , TATA-Binding Protein Associated Factors/chemistry , TATA-Binding Protein Associated Factors/metabolism , TATA-Binding Protein Associated Factors/ultrastructure , Temporal Lobe/metabolism , Temporal Lobe/pathology
11.
Alzheimers Dement ; 20(2): 1156-1165, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37908186

ABSTRACT

INTRODUCTION: We assessed TAR DNA-binding protein 43 (TDP-43) seeding activity and aggregates detection in olfactory mucosa of patients with frontotemporal lobar degeneration with TDP-43-immunoreactive pathology (FTLD-TDP) by TDP-43 seeding amplification assay (TDP43-SAA) and immunocytochemical analysis. METHODS: The TDP43-SAA was optimized using frontal cortex samples from 16 post mortem cases with FTLD-TDP, FTLD with tau inclusions, and controls. Subsequently, olfactory mucosa samples were collected from 17 patients with FTLD-TDP, 15 healthy controls, and three patients carrying MAPT variants. RESULTS: TDP43-SAA discriminated with 100% accuracy post mortem cases presenting or lacking TDP-43 neuropathology. TDP-43 seeding activity was detectable in the olfactory mucosa, and 82.4% of patients with FTLD-TDP tested positive, whereas 86.7% of controls tested negative (P < 0.001). Two out of three patients with MAPT mutations tested negative. In TDP43-SAA positive samples, cytoplasmatic deposits of phosphorylated TDP-43 in the olfactory neural cells were detected. DISCUSSION: TDP-43 aggregates can be detectable in olfactory mucosa, suggesting that TDP43-SAA might be useful for identifying and monitoring FTLD-TDP in living patients.


Subject(s)
Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Humans , Frontotemporal Dementia/genetics , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/pathology , tau Proteins/genetics , tau Proteins/metabolism , Frontal Lobe/metabolism , Neurons/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism
12.
Brain ; 147(4): 1539-1552, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38000783

ABSTRACT

It is increasingly evident that the association of glycans with the prion protein (PrP), a major post-translational modification, significantly impacts the pathogenesis of prion diseases. A recent bioassay study has provided evidence that the presence of PrP glycans decreases spongiform degeneration and disease-related PrP (PrPD) deposition in a murine model. We challenged (PRNPN181Q/197Q) transgenic (Tg) mice expressing glycan-free human PrP (TgGlyc-), with isolates from sporadic Creutzfeldt-Jakob disease subtype MM2 (sCJDMM2), sporadic fatal insomnia and familial fatal insomnia, three human prion diseases that are distinct but share histotypic and PrPD features. TgGlyc- mice accurately replicated the basic histotypic features associated with the three diseases but the transmission was characterized by high attack rates, shortened incubation periods and a greatly increased severity of the histopathology, including the presence of up to 40 times higher quantities of PrPD that formed prominent deposits. Although the engineered protease-resistant PrPD shared at least some features of the secondary structure and the presence of the anchorless PrPD variant with the wild-type PrPD, it exhibited different density gradient profiles of the PrPD aggregates and a higher stability index. The severity of the histopathological features including PrP deposition appeared to be related to the incubation period duration. These findings are clearly consistent with the protective role of the PrP glycans but also emphasize the complexity of the conformational changes that impact PrPD following glycan knockout. Future studies will determine whether these features apply broadly to other human prion diseases or are PrPD-type dependent.


Subject(s)
Creutzfeldt-Jakob Syndrome , Prion Diseases , Prions , Humans , Mice , Animals , Prion Proteins/genetics , Prion Proteins/metabolism , Prion Diseases/metabolism , Prions/metabolism , Creutzfeldt-Jakob Syndrome/pathology , Mice, Transgenic , Polysaccharides
13.
Acta Neuropathol Commun ; 11(1): 191, 2023 12 04.
Article in English | MEDLINE | ID: mdl-38049918

ABSTRACT

We used electron cryo-microscopy (cryo-EM) to determine the structures of Aß40 filaments from the leptomeninges of individuals with Alzheimer's disease and cerebral amyloid angiopathy. In agreement with previously reported structures, which were solved to a resolution of 4.4 Å, we found three types of filaments. However, our new structures, solved to a resolution of 2.4 Å, revealed differences in the sequence assignment that redefine the fold of Aß40 peptides and their interactions. Filaments are made of pairs of protofilaments, the ordered core of which comprises D1-G38. The different filament types comprise one, two or three protofilament pairs. In each pair, residues H14-G37 of both protofilaments adopt an extended conformation and pack against each other in an anti-parallel fashion, held together by hydrophobic interactions and hydrogen bonds between main chains and side chains. Residues D1-H13 fold back on the adjacent parts of their own chains through both polar and non-polar interactions. There are also several additional densities of unknown identity. Sarkosyl extraction and aqueous extraction gave the same structures. By cryo-EM, parenchymal deposits of Aß42 and blood vessel deposits of Aß40 have distinct structures, supporting the view that Alzheimer's disease and cerebral amyloid angiopathy are different Aß proteinopathies.


Subject(s)
Alzheimer Disease , Cerebral Amyloid Angiopathy , Humans , Amyloid beta-Peptides/chemistry , Cryoelectron Microscopy , Peptide Fragments , Amyloid , Plaque, Amyloid
14.
Alzheimers Dement ; 19 Suppl 9: S74-S88, 2023 11.
Article in English | MEDLINE | ID: mdl-37850549

ABSTRACT

INTRODUCTION: Magnetic resonance imaging (MRI) research has advanced our understanding of neurodegeneration in sporadic early-onset Alzheimer's disease (EOAD) but studies include small samples, mostly amnestic EOAD, and have not focused on developing an MRI biomarker. METHODS: We analyzed MRI scans to define the sporadic EOAD-signature atrophy in a small sample (n = 25) of Massachusetts General Hospital (MGH) EOAD patients, investigated its reproducibility in the large longitudinal early-onset Alzheimer's disease study (LEADS) sample (n = 211), and investigated the relationship of the magnitude of atrophy with cognitive impairment. RESULTS: The EOAD-signature atrophy was replicated across the two cohorts, with prominent atrophy in the caudal lateral temporal cortex, inferior parietal lobule, and posterior cingulate and precuneus cortices, and with relative sparing of the medial temporal lobe. The magnitude of EOAD-signature atrophy was associated with the severity of cognitive impairment. DISCUSSION: The EOAD-signature atrophy is a reliable and clinically valid biomarker of AD-related neurodegeneration that could be used in clinical trials for EOAD. HIGHLIGHTS: We developed an early-onset Alzheimer's disease (EOAD)-signature of atrophy based on magnetic resonance imaging (MRI) scans. EOAD signature was robustly reproducible across two independent patient cohorts. EOAD signature included prominent atrophy in parietal and posterior temporal cortex. The EOAD-signature atrophy was associated with the severity of cognitive impairment. EOAD signature is a reliable and clinically valid biomarker of neurodegeneration.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/pathology , Reproducibility of Results , Temporal Lobe/pathology , Magnetic Resonance Imaging/methods , Atrophy/pathology , Biomarkers
15.
J Am Chem Soc ; 145(42): 23131-23142, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37844142

ABSTRACT

The aggregation of misfolded tau into neurotoxic fibrils is linked to the progression of Alzheimer's disease (AD) and related tauopathies. Disease-associated conformations of filamentous tau are characterized by hydrophobic interactions between side chains on unique and distant ß-strand modules within each protomer. Here, we report the design and diversity-oriented synthesis of ß-arch peptide macrocycles composed of the aggregation-prone PHF6 hexapeptide of tau and the cross-ß module specific to the AD tau fold. Termed "ß-bracelets", these proteomimetics assemble in a sequence- and macrocycle-dependent fashion, resulting in amyloid-like fibrils that feature in-register parallel ß-sheet structure. Backbone N-amination of a selected ß-bracelet affords soluble inhibitors of tau aggregation. We further demonstrate that the N-aminated macrocycles block the prion-like cellular seeding activity of recombinant tau as well as mature fibrils from AD patient extracts. These studies establish ß-bracelets as a new class of cross-ß epitope mimics and demonstrate their utility in the rational design of molecules targeting amyloid propagation and seeding.


Subject(s)
Alzheimer Disease , Prions , Tauopathies , Humans , Epitopes , tau Proteins/chemistry , Peptides , Amyloid
16.
Nature ; 620(7975): 898-903, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37532939

ABSTRACT

The abnormal assembly of TAR DNA-binding protein 43 (TDP-43) in neuronal and glial cells characterizes nearly all cases of amyotrophic lateral sclerosis (ALS) and around half of cases of frontotemporal lobar degeneration (FTLD)1,2. A causal role for TDP-43 assembly in neurodegeneration is evidenced by dominantly inherited missense mutations in TARDBP, the gene encoding TDP-43, that promote assembly and give rise to ALS and FTLD3-7. At least four types (A-D) of FTLD with TDP-43 pathology (FTLD-TDP) are defined by distinct brain distributions of assembled TDP-43 and are associated with different clinical presentations of frontotemporal dementia8. We previously showed, using cryo-electron microscopy, that TDP-43 assembles into amyloid filaments in ALS and type B FTLD-TDP9. However, the structures of assembled TDP-43 in FTLD without ALS remained unknown. Here we report the cryo-electron microscopy structures of assembled TDP-43 from the brains of three individuals with the most common type of FTLD-TDP, type A. TDP-43 formed amyloid filaments with a new fold that was the same across individuals, indicating that this fold may characterize type A FTLD-TDP. The fold resembles a chevron badge and is unlike the double-spiral-shaped fold of ALS and type B FTLD-TDP, establishing that distinct filament folds of TDP-43 characterize different neurodegenerative conditions. The structures, in combination with mass spectrometry, led to the identification of two new post-translational modifications of assembled TDP-43, citrullination and monomethylation of R293, and indicate that they may facilitate filament formation and observed structural variation in individual filaments. The structures of TDP-43 filaments from type A FTLD-TDP will guide mechanistic studies of TDP-43 assembly, as well as the development of diagnostic and therapeutic compounds for TDP-43 proteinopathies.


Subject(s)
DNA-Binding Proteins , Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Humans , Citrullination , Cryoelectron Microscopy , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/ultrastructure , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Frontotemporal Lobar Degeneration/classification , Frontotemporal Lobar Degeneration/metabolism , Frontotemporal Lobar Degeneration/pathology , Methylation
17.
medRxiv ; 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37646002

ABSTRACT

Autopsy studies have demonstrated that comorbid neurodegenerative and cerebrovascular disease occur in the great majority of subjects with Alzheimer disease dementia (ADD), and are likely to additively alter the rate of decline or severity of cognitive impairment. The most important of these are Lewy body disease (LBD), TDP-43 proteinopathy and cerebrovascular disease, including white matter rarefaction (WMR) and cerebral infarcts. Comorbidities may interfere with ADD therapeutic trials evaluation of ADD clinical trials as they may not respond to AD-specific molecular therapeutics. It is possible, however, that at least some comorbidities may be, to some degree, secondary consequences of AD pathology, and if this were true then effective AD-specific therapeutics might also reduce the extent or severity of comorbid pathology. Comorbidities in ADD caused by autosomal dominant mutations such as those in the presenilin-1 (PSEN1) gene may provide an advantageous perspective on their pathogenesis, and deserve attention because these subjects are increasingly being entered into clinical trials. As ADD associated with PSEN1 mutations has a presumed single-cause etiology, and the average age at death is under 60, any comorbidities in this setting may be considered as at least partially secondary to the causative AD mechanisms rather than aging, and thus indicate whether effective ADD therapeutics may also be effective for comorbidities. In this study, we sought to compare the rates and types of ADD comorbidities between subjects with early-onset sporadic ADD (EOSADD; subjects dying under age 60) versus ADD associated with different types of PSEN1 mutations, the most common cause of early-onset autosomal dominant ADD. In particular, we were able to ascertain, for the first time, the prevalences of a fairly complete set of ADD comorbidities in United States (US) PSEN1 cases as well as the Colombian E280A PSEN1 kindred. Data for EOSADD and US PSEN1 subjects (with multiple different mutation types) was obtained from the National Alzheimer Coordinating Center (NACC). Colombian cases all had the E280A mutation and had a set of neuropathological observations classified, like the US cases according to the NACC NP10 definitions. Confirmatory of earlier reports, NACC-defined Alzheimer Disease Neuropathological Changes (ADNC) were consistently very severe in early-onset cases, whether sporadic or in PSEN1 cases, but were slightly less severe in EOSADD. Amyloid angiopathy was the only AD-associated pathology type with widely-differing severity scores between the 3 groups, with median scores of 3, 2 and 1 in the PSEN1 Colombia, PSEN1 US and EOSADD cases, respectively. Apoliprotein E genotype did not show significant proportional group differences for the possession of an E-4 or E-2 allele. Of ADD comorbidities, LBD was most common, being present in more than half of all cases in all 3 groups. For TDP-43 co-pathology, the Colombian PSEN1 group was the most affected, at about 27%, vs 16% and 11% for the US PSEN1 and sporadic US cases, respectively. Notably, hippocampal sclerosis and non-AD tau pathological conditions were not present in any of the US or Colombian PSEN1 cases, and was seen in only 3% of the EOSADD cases. Significant large-vessel atherosclerosis was present in a much larger percentage of Colombian PSEN1 cases, at almost 20% as compared to 0% and 3% of the US PSEN1 and EOSADD cases, respectively. Small-vessel disease, or arteriolosclerosis, was much more common than large vessel disease, being present in all groups between 18% and 37%. Gross and microscopic infarcts, however, as well as gross or microscopic hemorrhages, were generally absent or present at very low percentages in all groups. White matter rarefaction (WMR) was remarkably common, at almost 60%, in the US PSEN1 group, as compared to about 18% in the EOSADD cases, a significant difference. White matter rarefaction was not assessed in the Colombian PSEN1 cases. The results presented here, as well as other evidence, indicates that LBD, TDP-43 pathology and WMR, as common comorbidities with autosomal dominant and early-onset sporadic ADD, should be considered when planning clinical trials with such subjects as they may increase variability in response rates. However, they may be at least partially dependent on ADNC and thus potentially addressable by anti-amyloid or and/anti-tau therapies.

18.
Alzheimers Dement ; 19 Suppl 9: S89-S97, 2023 11.
Article in English | MEDLINE | ID: mdl-37491599

ABSTRACT

INTRODUCTION: We compared white matter hyperintensities (WMHs) in early-onset Alzheimer's disease (EOAD) with cognitively normal (CN) and early-onset amyloid-negative cognitively impaired (EOnonAD) groups in the Longitudinal Early-Onset Alzheimer's Disease Study. METHODS: We investigated the role of increased WMH in cognition and amyloid and tau burden. We compared WMH burden of 205 EOAD, 68 EOnonAD, and 89 CN participants in lobar regions using t-tests and analyses of covariance. Linear regression analyses were used to investigate the association between WMH and cognitive impairment and that between amyloid and tau burden. RESULTS: EOAD showed greater WMHs compared with CN and EOnonAD participants across all regions with no significant differences between CN and EOnonAD groups. Greater WMHs were associated with worse cognition. Tau burden was positively associated with WMH burden in the EOAD group. DISCUSSION: EOAD consistently showed higher WMH volumes. Overall, greater WMHs were associated with worse cognition and higher tau burden in EOAD. HIGHLIGHTS: This study represents a comprehensive characterization of WMHs in sporadic EOAD. WMH volumes are associated with tau burden from positron emission tomography (PET) in EOAD, suggesting WMHs are correlated with increasing burden of AD. Greater WMH volumes are associated with worse performance on global cognitive tests. EOAD participants have higher WMH volumes compared with CN and early-onset amyloid-negative cognitively impaired (EOnonAD) groups across all brain regions.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , White Matter , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/complications , White Matter/diagnostic imaging , White Matter/metabolism , Amyloid beta-Peptides/metabolism , tau Proteins/metabolism , Magnetic Resonance Imaging , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/complications , Amyloidogenic Proteins , Amyloid
19.
Nat Neurosci ; 26(8): 1449-1460, 2023 08.
Article in English | MEDLINE | ID: mdl-37429916

ABSTRACT

The Dominantly Inherited Alzheimer Network (DIAN) is an international collaboration studying autosomal dominant Alzheimer disease (ADAD). ADAD arises from mutations occurring in three genes. Offspring from ADAD families have a 50% chance of inheriting their familial mutation, so non-carrier siblings can be recruited for comparisons in case-control studies. The age of onset in ADAD is highly predictable within families, allowing researchers to estimate an individual's point in the disease trajectory. These characteristics allow candidate AD biomarker measurements to be reliably mapped during the preclinical phase. Although ADAD represents a small proportion of AD cases, understanding neuroimaging-based changes that occur during the preclinical period may provide insight into early disease stages of 'sporadic' AD also. Additionally, this study provides rich data for research in healthy aging through inclusion of the non-carrier controls. Here we introduce the neuroimaging dataset collected and describe how this resource can be used by a range of researchers.


Subject(s)
Alzheimer Disease , Arthrogryposis , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Positron-Emission Tomography , Magnetic Resonance Imaging , Neuroimaging , Mutation/genetics , Amyloid beta-Peptides/genetics
20.
J Mol Biol ; 435(11): 168025, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37330290

ABSTRACT

Positron emission tomography (PET) imaging allows monitoring the progression of amyloid aggregation in the living brain. [18F]-Flortaucipir is the only approved PET tracer compound for the visualisation of tau aggregation. Here, we describe cryo-EM experiments on tau filaments in the presence and absence of flortaucipir. We used tau filaments isolated from the brain of an individual with Alzheimer's disease (AD), and from the brain of an individual with primary age-related tauopathy (PART) with a co-pathology of chronic traumatic encephalopathy (CTE). Unexpectedly, we were unable to visualise additional cryo-EM density for flortaucipir for AD paired helical or straight filaments (PHFs or SFs), but we did observe density for flortaucipir binding to CTE Type I filaments from the case with PART. In the latter, flortaucipir binds in a 1:1 molecular stoichiometry with tau, adjacent to lysine 353 and aspartate 358. By adopting a tilted geometry with respect to the helical axis, the 4.7 Å distance between neighbouring tau monomers is reconciled with the 3.5 Å distance consistent with π-π-stacking between neighbouring molecules of flortaucipir.


Subject(s)
Alzheimer Disease , Carbolines , Chronic Traumatic Encephalopathy , Intermediate Filaments , Radioactive Tracers , tau Proteins , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Brain/metabolism , Chronic Traumatic Encephalopathy/metabolism , Chronic Traumatic Encephalopathy/pathology , Cryoelectron Microscopy , Ligands , Positron-Emission Tomography/methods , tau Proteins/chemistry , Tauopathies/metabolism , Tauopathies/pathology , Intermediate Filaments/chemistry , Carbolines/chemistry , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...