Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Adv Healthc Mater ; 13(3): e2301123, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37921265

ABSTRACT

Studies on gamma radiation-induced injury have long been focused on hematopoietic, gastrointestinal, and cardiovascular systems, yet little is known about the effects of gamma radiation on the function of human cortical tissue. The challenge in studying radiation-induced cortical injury is, in part, due to a lack of human tissue models and physiologically relevant readouts. Here, a physiologically relevant 3D collagen-based cortical tissue model (CTM) is developed for studying the functional response of human iPSC-derived neurons and astrocytes to a sub-lethal radiation exposure (5 Gy). Cytotoxicity, DNA damage, morphology, and extracellular electrophysiology are quantified. It is reported that 5 Gy exposure significantly increases cytotoxicity, DNA damage, and astrocyte reactivity while significantly decreasing neurite length and neuronal network activity. Additionally, it is found that clinically deployed radioprotectant amifostine ameliorates the DNA damage, cytotoxicity, and astrocyte reactivity. The CTM provides a critical experimental platform to understand cell-level mechanisms by which gamma radiation (GR) affects human cortical tissue and to screen prospective radioprotectant compounds.


Subject(s)
Amifostine , Humans , Gamma Rays , Prospective Studies , DNA Damage , Neurons
2.
Sci Rep ; 13(1): 7174, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37138045

ABSTRACT

Sample pooling is a promising strategy to facilitate COVID-19 surveillance testing for a larger population in comparison to individual single testing due to resource and time constraints. Increased surveillance testing capacity will reduce the likelihood of outbreaks as the general population is returning to work, school, and other gatherings. We have analyzed the impact of three variables on the effectiveness of pooling test samples: swab type, workflow, and positive sample order. We investigated the performance of several commercially available swabs (Steripack polyester flocked, Puritan nylon flocked, Puritan foam) in comparison to a new injected molded design (Yukon). The bench-top performance of collection swab was conducted with a previously developed anterior nasal cavity tissue model, based on a silk-glycerol sponge to mimic soft tissue mechanics and saturated with a physiologically relevant synthetic nasal fluid spiked with heat-inactivated SARS-CoV-2. Overall, we demonstrated statistically significant differences in performance across the different swab types. A characterization of individual swab uptake (gravimetric analysis) and FITC microparticle release suggests that differences in absorbance and retention drive the observed differences in Ct of the pooled samples. We also proposed two distinct pooling workflows to encompass different community collection modes and analyzed the difference in resulting positive pools as an effect of workflow, swab type, and positive sample order. Overall, swab types with lower volume retention resulted in reduced false negative occurrence, also observed for collection workflows with limited incubation times. Concurrently, positive sample order did have a significant impact on pooling test outcome, particularly in the case of swab type with great volume retention. We demonstrated that the variables investigated here affect the results of pooled COVID-19 testing, and therefore should be considered while designing pooled surveillance testing.


Subject(s)
COVID-19 Testing , COVID-19 , Humans , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , Workflow , Specimen Handling/methods
3.
Adv Sci (Weinh) ; 10(12): e2205473, 2023 04.
Article in English | MEDLINE | ID: mdl-36825685

ABSTRACT

The oral cavity contains distinct microenvironments that serve as oral barriers, such as the non-shedding surface of the teeth (e.g., enamel), the epithelial mucosa and gingival tissue (attached gingiva) where microbial communities coexist. The interactions and balances between these communities are responsible for oral tissue homeostasis or dysbiosis, that ultimately dictate health or disease. Disruption of this equilibrium can lead to chronic inflammation and permanent tissue damage in the case of chronic periodontitis. There are currently no experimental tissue models able to mimic the structural, physical, and metabolic conditions present in the human oral gingival tissue to support the long-term investigation of host-pathogens imbalances. Herein, the authors report an in vitro 3D anatomical gingival tissue model, fabricated from silk biopolymer by casting a replica mold of an adult human mandibular gingiva to recreate a tooth-gum unit. The model is based on human primary cultures that recapitulate physiological tissue organization, as well as a native oxygen gradient within the gingival pocket to support human subgingival plaque microbiome with a physiologically relevant level of microbial diversity up to 24 h. The modulation of inflammatory markers in the presence of oral microbiome indicates the humanized functional response of this model and establishes a new set of tools to investigate host-pathogen imbalances in gingivitis and periodontal diseases.


Subject(s)
Gingivitis , Microbiota , Periodontal Diseases , Adult , Humans , Gingiva , Gingival Pocket
4.
ACS Omega ; 7(14): 12193-12201, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35449955

ABSTRACT

Large-scale population testing is a key tool to mitigate the spread of respiratory pathogens, such as the current COVID-19 pandemic, where swabs are used to collect samples in the upper airways (e.g., nasopharyngeal and midturbinate nasal cavities) for diagnostics. However, the high volume of supplies required to achieve large-scale population testing has posed unprecedented challenges for swab manufacturing and distribution, resulting in a global shortage that has heavily impacted testing capacity worldwide and prompted the development of new swabs suitable for large-scale production. Newly designed swabs require rigorous preclinical and clinical validation studies that are costly and time-consuming (i.e., months to years long); reducing the risks associated with swab validation is therefore paramount for their rapid deployment. To address these shortages, we developed a 3D-printed tissue model that mimics the nasopharyngeal and midturbinate nasal cavities, and we validated its use as a new tool to rapidly test swab performance. In addition to the nasal architecture, the tissue model mimics the soft nasal tissue with a silk-based sponge lining, and the physiological nasal fluid with asymptomatic and symptomatic viscosities of synthetic mucus. We performed several assays comparing standard flocked and injection-molded swabs. We quantified the swab pickup and release and determined the effect of viral load and mucus viscosity on swab efficacy by spiking the synthetic mucus with heat-inactivated SARS-CoV-2 virus. By molecular assay, we found that injected molded swabs performed similarly or superiorly in comparison to standard flocked swabs, and we underscored a viscosity-dependent difference in cycle threshold values between the asymptomatic and symptomatic mucuses for both swabs. To conclude, we developed an in vitro nasal tissue model that corroborated previous swab performance data from clinical studies; this model will provide to researchers a clinically relevant, reproducible, safe, and cost-effective validation tool for the rapid development of newly designed swabs.

5.
Diagnostics (Basel) ; 12(1)2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35054373

ABSTRACT

During the COVID-19 public health emergency, many actions have been undertaken to help ensure that patients and health care providers have timely and continued access to high-quality medical devices to respond effectively. The development and validation of new testing supplies and equipment, including collection swabs, has helped to expand the availability and capability for various diagnostic, therapeutic, and protective medical devices in high demand during the COVID-19 emergency. Here, we report the initial validation of a new injection-molded anterior nasal swab, ClearTip™, that was experimentally validated in a laboratory setting as well as in independent clinical studies in comparison to gold standard flocked swabs. We have also developed an in vitro anterior nasal tissue model which offers a novel, efficient, and clinically relevant validation tool to replicate the clinical swabbing workflow with high fidelity, while being accessible, safe, reproducible, and time- and cost-effective. ClearTip™ displayed greater inactivated virus release in the benchtop model, confirmed by its greater ability to report positive samples in a small clinical study in comparison to flocked swabs. We also quantified the detection of biological materials, as a proxy for viral material, in multi-center pre-clinical and clinical studies which showed a statistically significant difference in one study and a reduction in performance in comparison to flocked swabs. Taken together, these results emphasize the compelling benefits of non-absorbent injection-molded anterior nasal swabs for COVID-19 detection, comparable to standard flocked swabs. Injection-molded swabs, as ClearTip™, could have the potential to support future swab shortages, due to its manufacturing advantages, while offering benefits in comparison to highly absorbent swabs in terms of comfort, limited volume collection, and potential multiple usage.

6.
medRxiv ; 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34845461

ABSTRACT

Large-scale population testing is a key tool to mitigate the spread of respiratory pathogens, as in the current COVID-19 pandemic, where swabs are used to collect samples in the upper airways (e.g. nasopharyngeal and mid-turbinate nasal cavities) for diagnostics. However, the high volume of supplies required to achieve large-scale population testing has posed unprecedented challenges for swab manufacturing and distribution, resulting in a global shortage that has heavily impacted testing capacity world-wide and prompted the development of new swabs suitable for large-scale production. Newly designed swabs require rigorous pre-clinical and clinical validation studies that are costly and time consuming ( i . e . months to years long); reducing the risks associated with swab validation is therefore paramount for their rapid deployment. To address these shortages, we developed a 3D-printed tissue model that mimics the nasopharyngeal and mid-turbinate nasal cavities, and we validated its use as a new tool to rapidly test swab performance. In addition to the nasal architecture, the tissue model mimics the soft nasal tissue with a silk-based sponge lining, and the physiological nasal fluid with asymptomatic and symptomatic viscosities of synthetic mucus. We performed several assays comparing standard flocked and injection-molded swabs. We quantified the swab pick-up and release, and determined the effect of viral load and mucus viscosity on swab efficacy by spiking the synthetic mucus with heat-inactivated SARS-CoV-2 virus. By molecular assays, we found that injected molded swabs performed similarly or superiorly in comparison to standard flocked swabs and we underscored a viscosity-dependent difference in cycle threshold values between the asymptomatic and symptomatic mucus for both swabs. To conclude, we developed an in vitro nasal tissue model, that corroborated previous swab performance data from clinical studies, with the potential of providing researchers with a clinically relevant, reproducible, safe, and cost-effective validation tool for the rapid development of newly designed swabs.

7.
Biomaterials ; 233: 119729, 2020 03.
Article in English | MEDLINE | ID: mdl-31927250

ABSTRACT

Multiple ophthalmic pathologies, such as retinal detachment and diabetic retinopathy, require the removal and replacement of the vitreous humor. Clinical tamponades such as silicone oil and fluorinated gases are utilized but limited due to complications and toxicity. Therefore, there is a need for biocompatible, stable, vitreous humor substitutes. In this study, enzymatically crosslinked silk-hyaluronic acid (HA) hydrogels formed using horseradish peroxidase and H2O2 were characterized for use as vitreous humor substitutes. The composite network structure was characterized with dynamic light scattering. In addition, the rheological, optical, and swelling properties of hydrogels with varying silk to HA ratios and crosslinking densities controlled via H2O2 were determined over time. Hydrogels had refractive indexes of 1.336 and were clear with 75-91% light transmission. Hydrogel shear storage modulus ranged between ~6 and 240 Pa where increased H2O2 increased the modulus. After 1 month of aging, there were no changes in modulus for hydrogels with lower silk ratios, while those with higher silk ratios exhibited a significant increase in modulus. Decreasing H2O2 concentration in the reactions led to increased hydrogel volume during swelling, with higher silk ratios returning to their original size after 15 days. Dynamic light scattering results show three diffusive modes, revealing the possible structures of the hydrogel composite and are consistent with the mechanical properties and swelling results. The normalized intraocular pressure of ex vivo porcine eyes after injecting hydrogels were comparable with those treated with silicone oil showing the potential clinical utility of the hydrogels as vitreous substitutes. The versatility of the silk-HA hydrogel system, the tunable swelling properties, and the stability of hydrogels with lower silk ratios show the benefit of utilizing silk-HA hydrogels as vitreous substitutes.


Subject(s)
Hydrogels , Silk , Animals , Biocompatible Materials , Hyaluronic Acid , Hydrogen Peroxide , Swine , Vitreous Body
8.
J Biomed Mater Res B Appl Biomater ; 108(2): 468-474, 2020 02.
Article in English | MEDLINE | ID: mdl-31070848

ABSTRACT

Cervical insufficiency (CI) is an important cause of preterm birth, which leads to severe newborn complications. Standard treatment for CI is cerclage, which has variable success rates, resulting in a clinical need for alternative treatments. Our objective was to develop an ex vivo model of softened cervical tissue to study an injectable silk-based hydrogel as a novel alternative treatment for CI. Cervical tissue from nonpregnant women was enzymatically treated and characterized to determine tissue hydration, collagen organization, and mechanical properties via unconfined compression. Enzymatic treatment led to an 86 ± 7.9% decrease in modulus, which correlated to a decrease in collagen organization as observed by differences in collagen birefringence. The softened tissue was injected with a crosslinked silk-hyaluronic acid composite hydrogel. After injection, the mechanical properties and volume increase of the hydrogel-treated tissue were measured resulting in a 54 ± 16% volume increase with minimal effect on tissue mechanical properties. In addition, cervical fibroblasts on silk-hyaluronic acid hydrogels remained viable and exhibited increased proliferation and metabolic activity over 5 days. Overall, this study developed an ex vivo pregnant-like human tissue model to assess cervical augmentation and showed the potential of silk-based hydrogels as an alternative treatment for cervical insufficiency.


Subject(s)
Biocompatible Materials/chemistry , Hydrogels/chemistry , Premature Birth/prevention & control , Silk/chemistry , Tissue Scaffolds/chemistry , Biocompatible Materials/metabolism , Cell Proliferation , Cervix Uteri , Collagen/chemistry , Cross-Linking Reagents/chemistry , Female , Fibroblasts/cytology , Humans , Hyaluronic Acid/chemistry , Hydrogels/metabolism , Infant, Newborn , Injections , Materials Testing , Pregnancy , Silk/metabolism , Surface Properties , Tissue Engineering
9.
Curr Protoc Toxicol ; 81(1): e84, 2019 09.
Article in English | MEDLINE | ID: mdl-31529796

ABSTRACT

The cornea provides a functional barrier separating the outside environment from the intraocular environment, thereby protecting posterior segments of the eye from infection and damage. Pathological changes that compromise the structure or integrity of the cornea may occur as a result of injury or disease and can lead to debilitating effects on visual acuity. Over 10 million people worldwide are visually impaired or blind due to corneal opacity. Thus, physiologically relevant in vitro approaches to predict corneal toxicity of chemicals or effective treatments for disease prior to ocular exposure, as well as to study the corneal effects of systemic, chronic conditions, such as diabetes, are needed to reduce use of animal testing and accelerate therapeutic development. We have previously bioengineered an innervated corneal tissue model using silk protein scaffolds to recapitulate the structural and mechanical elements of the anterior cornea and to model the functional aspects of corneal sensation with the inclusion of epithelial, stromal, and neural components. The purpose of this unit is to provide a step-by-step guide for preparation, assembly, and application of this three-dimensional corneal tissue system to enable the study of corneal tissue biology. © 2019 by John Wiley & Sons, Inc.


Subject(s)
Cornea , Silk , Tissue Culture Techniques/instrumentation , Tissue Scaffolds , Animal Testing Alternatives , Dimethylpolysiloxanes , Humans , Tissue Culture Techniques/methods , Tissue Engineering/methods , Toxicity Tests
10.
Prog Retin Eye Res ; 71: 88-113, 2019 07.
Article in English | MEDLINE | ID: mdl-30453079

ABSTRACT

The cornea is a valuable tissue for studying peripheral sensory nerve structure and regeneration due to its avascularity, transparency, and dense innervation. Somatosensory innervation of the cornea serves to identify changes in environmental stimuli at the ocular surface, thereby promoting barrier function to protect the eye against injury or infection. Due to regulatory demands to screen ocular safety of potential chemical exposure, a need remains to develop functional human tissue models to predict ocular damage and pain using in vitro-based systems to increase throughput and minimize animal use. In this review, we summarize the anatomical and functional roles of corneal innervation in propagation of sensory input, corneal neuropathies associated with pain, and the status of current in vivo and in vitro models. Emphasis is placed on tissue engineering approaches to study the human corneal pain response in vitro with integration of proper cell types, controlled microenvironment, and high-throughput readouts to predict pain induction. Further developments in this field will aid in defining molecular signatures to distinguish acute and chronic pain triggers based on the immune response and epithelial, stromal, and neuronal interactions that occur at the ocular surface that lead to functional outcomes in the brain depending on severity and persistence of the stimulus.


Subject(s)
Cornea/physiology , Corneal Diseases/physiopathology , Eye Pain/physiopathology , Neuralgia/physiopathology , Animals , Humans , Models, Theoretical
11.
Sci Rep ; 8(1): 17294, 2018 11 23.
Article in English | MEDLINE | ID: mdl-30470798

ABSTRACT

Diabetes mellitus is a disease caused by innate or acquired insulin deficiency, resulting in altered glucose metabolism and high blood glucose levels. Chronic hyperglycemia is linked to development of several ocular pathologies affecting the anterior segment, including diabetic corneal neuropathy and keratopathy, neovascular glaucoma, edema, and cataracts leading to significant visual defects. Due to increasing disease prevalence, related medical care costs, and visual impairment resulting from diabetes, a need has arisen to devise alternative systems to study molecular mechanisms involved in disease onset and progression. In our current study, we applied a novel 3D in vitro model of the human cornea comprising of epithelial, stromal, and neuronal components cultured in silk scaffolds to study the pathological effects of hyperglycemia on development of diabetic corneal neuropathy. Specifically, exposure to sustained levels of high glucose, ranging from 35 mM to 45 mM, were applied to determine concentration-dependent effects on nerve morphology, length and density of axons, and expression of metabolic enzymes involved in glucose metabolism. By comparing these metrics to in vivo studies, we have developed a functional 3D in vitro model for diabetic corneal neuropathy as a means to investigate corneal pathophysiology resulting from prolonged exposure to hyperglycemia.


Subject(s)
Cornea/physiopathology , Corneal Diseases/pathology , Diabetes Mellitus/physiopathology , Diabetic Neuropathies/pathology , Hyperglycemia/physiopathology , Models, Biological , Peripheral Nervous System Diseases/pathology , Cells, Cultured , Cornea/innervation , Corneal Diseases/etiology , Diabetes Complications/etiology , Diabetes Complications/pathology , Diabetes Mellitus/chemically induced , Diabetic Neuropathies/etiology , Glucose/adverse effects , Humans , Hyperglycemia/chemically induced , In Vitro Techniques , Peripheral Nervous System Diseases/etiology , Sweetening Agents/adverse effects
12.
Adv Healthc Mater ; 7(19): e1800488, 2018 10.
Article in English | MEDLINE | ID: mdl-30091220

ABSTRACT

New in vitro tissue models to mimic in vivo conditions are needed to provide insight into mechanisms involved in peripheral pain responses, potential therapeutic strategies to address these responses, and to replace animal models for such indications. For example, the rabbit cornea Draize test has become the standard method used for decades to screen ophthalmic drug and consumer product toxicity. In vitro tissue models with functional innervation have the potential to replace in vivo animal testing and provide sophisticated bench tools to study ocular nociception and its amelioration. Herein, full thickness, innervated, 3D human corneal tissues are grown under physiologically relevant culture conditions to study nociceptive-related responses, by mimicking ocular environmental cues, including intraocular pressure (IOP) and tear flow (TF). Capsaicin, a chili pepper-derived irritant known to cause a burning sensation in mammalian tissues is utilized as a nociceptive stimulant to induce pain, while subsequent serum treatment is used to mimic healing. Pain mediators released upon capsaicin stimulation and cell regrowth after serum treatment are characterized to assess ocular responses in this new, innervated, human corneal tissue system for comparison of outcomes to established animal and related responses.


Subject(s)
Cornea/pathology , Nociceptive Pain/chemically induced , Capsaicin/toxicity , Cells, Cultured , Cornea/drug effects , Enzyme-Linked Immunosorbent Assay , Humans , Immunohistochemistry , Wound Healing/physiology
13.
J Tissue Eng Regen Med ; 12(1): 285-295, 2018 01.
Article in English | MEDLINE | ID: mdl-28600807

ABSTRACT

With insufficient options to meet the clinical demand for cornea transplants, one emerging area of emphasis is on cornea tissue engineering. In the present study, the goal was to combine the corneal stroma and epithelium into one coculture system, to monitor both human corneal stromal stem cell (hCSSC) and human corneal epithelial cell (hCE) growth and differentiation into keratocytes and differentiated epithelium in these three-dimensional tissue systems in vitro. Coculture conditions were first optimized, including the medium, air-liquid interface culture, and surface topography and chemistry of biomaterial scaffold films based on silk protein. The silk was used as scaffolding for both stromal and epithelial tissue layers because it is cell compatible, can be surface patterned, and is optically clear. Next, the effects of proliferating and differentiating hCEs and hCSSCs were studied in this in vitro system, including the effects on cell proliferation, matrix formation by immunochemistry, and gene expression by quantitative reverse transcription-polymerase chain reaction. The incorporation of both cell types into the coculture system demonstrated more complete differentiation and growth for both cell types compared to the corneal stromal cells and corneal epithelial cells alone. Silk films for corneal epithelial culture were optimized to combine a 4.0-µm-scale surface pattern with bulk-loaded collagen type IV. Differentiation of each cell type was in evidence based on increased expression of corneal stroma and epithelial proteins and transcript levels after 6 weeks in coculture on the optimized silk scaffolds.


Subject(s)
Coculture Techniques/methods , Corneal Stroma/cytology , Epithelium, Corneal/cytology , Silk/pharmacology , Stem Cells/cytology , Cell Adhesion/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Humans , Phenotype , Stem Cells/drug effects , Stem Cells/metabolism , Tissue Engineering
14.
Biomaterials ; 131: 58-67, 2017 07.
Article in English | MEDLINE | ID: mdl-28376366

ABSTRACT

In this study, silk fibroin and hyaluronic acid (HA) were enzymatically crosslinked to form biocompatible composite hydrogels with tunable mechanical properties similar to that of native tissues. The formation of di-tyrosine crosslinks between silk fibroin proteins via horseradish peroxidase has resulted in a highly elastic hydrogel but exhibits time-dependent stiffening related to silk self-assembly and crystallization. Utilizing the same method of crosslinking, tyramine-substituted HA forms hydrophilic and bioactive hydrogels that tend to have limited mechanics and degrade rapidly. To address the limitations of these singular component scaffolds, HA was covalently crosslinked with silk, forming a composite hydrogel that exhibited both mechanical integrity and hydrophilicity. The composite hydrogels were assessed using unconfined compression and infrared spectroscopy to reveal of the physical properties over time in relation to polymer concentration. In addition, the hydrogels were characterized by enzymatic degradation and for cytotoxicity. Results showed that increasing HA concentration, decreased gelation time, increased degradation rate, and reduced changes that were observed over time in mechanics, water retention, and crystallization. These hydrogel composites provide a biologically relevant system with controllable temporal stiffening and elasticity, thus offering enhanced tunable scaffolds for short or long term applications in tissue engineering.


Subject(s)
Biocompatible Materials/chemistry , Hyaluronic Acid/chemistry , Hydrogels/chemistry , Silk/chemistry , Animals , Bombyx/chemistry , Cells, Cultured , Cross-Linking Reagents/chemistry , Elasticity , Humans , Materials Testing , Mesenchymal Stem Cells/cytology , Rheology , Tissue Scaffolds/chemistry
15.
PLoS One ; 12(1): e0169504, 2017.
Article in English | MEDLINE | ID: mdl-28099503

ABSTRACT

The worldwide need for human cornea equivalents continues to grow. Few clinical options are limited to allogenic and synthetic material replacements. We hypothesized that tissue engineered human cornea systems based on mechanically robust, patterned, porous, thin, optically clear silk protein films, in combination with human corneal stromal stem cells (hCSSCs), would generate 3D functional corneal stroma tissue equivalents, in comparison to previously developed 2D approaches. Silk film contact guidance was used to control the alignment and distribution of hCSSCs on RGD-treated single porous silk films, which were then stacked in an orthogonally, multi-layered architecture and cultured for 9 weeks. These systems were compared similar systems generated with human corneal fibroblasts (hCFs). Both cell types were viable and preferentially aligned along the biomaterial patterns for up to 9 weeks in culture. H&E histological sections showed that the systems seeded with the hCSSCs displayed ECM production throughout the entire thickness of the constructs. In addition, the ECM proteins tested positive for keratocyte-specific tissue markers, including keratan sulfate, lumican, and keratocan. The quantification of hCSSC gene expression of keratocyte-tissue markers, including keratocan, lumican, human aldehyde dehydrogenase 3A1 (ALDH3A1), prostaglandin D2 synthase (PTDGS), and pyruvate dehydrogenase kinase, isozyme 4 (PDK4), within the 3D tissue systems demonstrated upregulation when compared to 2D single silk films and to the systems generated with the hCFs. Furthermore, the production of ECM from the hCSSC seeded systems and subsequent remodeling of the initial matrix significantly improved cohesiveness and mechanical performance of the constructs, while maintaining transparency after 9 weeks.


Subject(s)
Corneal Stroma/cytology , Silk/chemistry , Stem Cells/cytology , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Cell Survival , Cells, Cultured , Corneal Keratocytes/physiology , Corneal Stroma/physiology , Dimethylpolysiloxanes/chemistry , Fibroblasts/cytology , Gene Expression Regulation , Humans , Proteoglycans/metabolism , Stromal Cells/cytology , Stromal Cells/physiology
16.
J Tissue Eng Regen Med ; 11(7): 2046-2059, 2017 07.
Article in English | MEDLINE | ID: mdl-26549403

ABSTRACT

Type I collagen is a major structural and functional protein in connective tissues. However, collagen gels exhibit unstable geometrical properties, arising from extensive cell-mediated contraction. In an effort to stabilize collagen-based hydrogels, plastic compression was used to hybridize dense collagen (DC) with electrospun silk fibroin (SF) mats, generating multilayered DC-SF-DC constructs. Seeded mesenchymal stem cell (MSC)-mediated DC-SF-DC contraction, as well as growth and differentiation under chondrogenic and osteogenic supplements, were compared to those seeded in DC and on SF alone. The incorporation of SF within DC prevented extensive cell-mediated collagen gel contraction. The effect of the multilayered hybrid on MSC remodelling capacity was also evident at the transcription level, where the expression of matrix metalloproteinases and their inhibitor (MMP1, MMP2, MMP3, MMP13 and Timp1) by MSCs within DC-SF-DC were comparable to those on SF and significantly downregulated in comparison to DC, except for Timp1. Chondrogenic supplements stimulated extracellular matrix production within the construct, stabilizing its multilayered structure and promoting MSC chondrogenic differentiation, as indicated by the upregulation of the genes Col2a1 and Agg and the production of collagen type II. In osteogenic medium there was an upregulation in ALP and OP along with the presence of an apatitic phase, indicating MSC osteoblastic differentiation and matrix mineralization. In sum, these results have implications on the modulation of three-dimensional collagen-based gel structural stability and on the stimulation and maintenance of the MSC committed phenotype inherent to the in vitro formation of chondral tissue and bone, as well as on potential multilayered complex tissues. Copyright © 2015 John Wiley & Sons, Ltd.


Subject(s)
Cell Differentiation , Chondrogenesis , Collagen/chemistry , Fibroins/chemistry , Mesenchymal Stem Cells/metabolism , Osteogenesis , Animals , Antigens, Differentiation/biosynthesis , Cells, Cultured , Mesenchymal Stem Cells/cytology , Mice
17.
J Tissue Eng Regen Med ; 11(9): 2549-2564, 2017 09.
Article in English | MEDLINE | ID: mdl-27061681

ABSTRACT

The response of human bone marrow-derived mesenchymal stem cells (hMSCs) encapsulated in three-dimensional (3D) charged protein hydrogels was studied. Combining silk fibroin (S) with recombinant human tropoelastin (E) or silk ionomers (I) provided protein composite alloys with tunable physicochemical and biological features for regulating the bioactivity of encapsulated hMSCs. The effects of the biomaterial charges on hMSC viability, proliferation and chondrogenic or osteogenic differentiation were assessed. The silk-tropoelastin or silk-ionomers hydrogels supported hMSC viability, proliferation and differentiation. Gene expression of markers for chondrogenesis and osteogenesis, as well as biochemical and histological analysis, showed that hydrogels with different S/E and S/I ratios had different effects on cell fate. The negatively charged hydrogels upregulated hMSC chondrogenesis or osteogenesis, with or without specific differentiation media, and hydrogels with higher tropoelastin content inhibited the differentiation potential even in the presence of the differentiation media. The results provide insight on charge-tunable features of protein-based biomaterials to control hMSC differentiation in 3D hydrogels, as well as providing a new set of hydrogels for the compatible encapsulation and utility for cell functions. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Cell Differentiation , Cell Proliferation , Hydrogels/chemistry , Mesenchymal Stem Cells/metabolism , Silk/chemistry , Tropoelastin/chemistry , Cell Culture Techniques , Cell Survival , Cells, Immobilized/cytology , Cells, Immobilized/metabolism , Chondrogenesis , Humans , Mesenchymal Stem Cells/cytology , Osteogenesis
18.
Biomaterials ; 112: 1-9, 2017 01.
Article in English | MEDLINE | ID: mdl-27741498

ABSTRACT

The interactions between corneal nerve, epithelium, and stroma are essential for maintaining a healthy cornea. Thus, corneal tissue models that more fully mimic the anatomy, mechanical properties and cellular components of corneal tissue would provide useful systems to study cellular interactions, corneal diseases and provide options for improved drug screening. Here a corneal tissue model was constructed to include the stroma, epithelium, and innervation. Thin silk protein film stacks served as the scaffolding to support the corneal epithelial and stromal layers, while a surrounding silk porous sponge supported neuronal growth. The neurons innervated the stromal and epithelial layers and improved function and viability of the tissues. An air-liquid interface environment of the corneal tissue was also mimicked in vitro, resulting in a positive impact on epithelial maturity. The inclusion of three cell types in co-culture at an air-liquid interface provides an important advance for the field of in vitro corneal tissue engineering, to permit improvements in the study of innervation and corneal tissue development, corneal disease, and tissue responses to environmental factors.


Subject(s)
Cornea/cytology , Cornea/growth & development , Organ Culture Techniques/methods , Printing, Three-Dimensional , Tissue Engineering/methods , Bioartificial Organs , Cells, Cultured , Coculture Techniques/methods , Cornea/innervation , Humans , Neurons/cytology , Neurons/physiology , Silk/chemistry , Stromal Cells/cytology , Stromal Cells/physiology , Tissue Engineering/instrumentation , Tissue Scaffolds
19.
Invest Ophthalmol Vis Sci ; 57(14): 6134-6146, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27832279

ABSTRACT

PURPOSE: We fabricated and investigated polymeric scaffolds that can substitute for the conjunctival extracellular matrix to provide a substrate for autologous expansion of human conjunctival goblet cells in culture. METHODS: We fabricated two hydrogels and two silk films: (1) recombinant human collagen (RHC) hydrogel, (2) recombinant human collagen 2-methacryloylxyethyl phosphorylcholine (RHC-MPC) hydrogel, (3) arginine-glycine-aspartic acid (RGD) modified silk, and (4) poly-D-lysine (PDL) coated silk, and four electrospun scaffolds: (1) collagen, (2) poly(acrylic acid) (PAA), (3) poly(caprolactone) (PCL), and (4) poly(vinyl alcohol) (PVA). Coverslips and polyethylene terephthalate (PET) were used for comparison. Human conjunctival explants were cultured on scaffolds for 9 to 15 days. Cell viability, outgrowth area, and the percentage of cells expressing markers for stratified squamous epithelial cells (cytokeratin 4) and goblet cells (cytokeratin 7) were determined. RESULTS: Most of cells grown on all scaffolds were viable except for PCL in which only 3.6 ± 2.2% of the cells were viable. No cells attached to PVA scaffold. The outgrowth was greatest on PDL-silk and PET. Outgrowth was smallest on PCL. All cells were CK7-positive on RHC-MPC while 84.7 ± 6.9% of cells expressed CK7 on PDL-silk. For PCL, 87.10 ± 3.17% of cells were CK7-positive compared to PET where 67.10 ± 12.08% of cells were CK7-positive cells. CONCLUSIONS: Biopolymer substrates in the form of hydrogels and silk films provided for better adherence, proliferation, and differentiation than the electrospun scaffolds and could be used for conjunctival goblet cell expansion for eventual transplantation once undifferentiated and stratified squamous cells are included. Useful polymer scaffold design characteristics have emerged from this study.


Subject(s)
Conjunctiva/cytology , Extracellular Matrix/chemistry , Goblet Cells/cytology , Nanofibers , Polymers , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Adolescent , Adult , Aged , Biocompatible Materials , Cell Differentiation , Cell Proliferation , Cell Survival , Cells, Cultured , Female , Humans , Male , Middle Aged , Young Adult
20.
J Appl Biomater Funct Mater ; 14(3): e266-76, 2016 Jul 26.
Article in English | MEDLINE | ID: mdl-27230452

ABSTRACT

INTRODUCTION: The need for human cornea tissues continues to grow as an alternative option to donor tissues. Silk protein has been successfully used as a substrate to engineer corneal epithelium and stroma in vitro. Herein, we investigated the in vivo response and the effect of silk crystalline structure (beta sheet) on degradation rate of silk films in rabbit multipocket corneal models. METHODS: Three different surgical techniques (peripheral-median P-M, central-superficial C-S, central-deep C-D) were used to assess the in vivo response as well as the degradation profile of silk films with low, medium and high beta sheet (crystalline) content at 2 and 3 months after surgery. RESULTS: Approach C-D showed signs of sample degradation without inflammation, with one single incision and a pocket created by flushing air two thirds deep in the corneal stroma. In comparison, approaches P-M and C-S with multiple incisions presented manually dissected surgical pockets resulted in inflammation and possible extrusion of the samples, respectively. Low beta sheet samples lost structural integrity at 2 months after surgery C-D, while medium and high beta sheet content films showed initial evidence of degradation. CONCLUSIONS: The in vivo response to the silk films was dependent on the location of the implant and pocket depth. Crystallinity content in silk films played a significant role in the timing of material degradation, without signs of inflammation and vascularization or changes in stromal organization.


Subject(s)
Corneal Stroma , Epithelium, Corneal , Materials Testing , Silk , Tissue Engineering , Tissue Scaffolds/chemistry , Animals , Humans , Rabbits , Silk/chemistry , Silk/pharmacokinetics , Silk/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...