Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters











Publication year range
1.
Heliyon ; 9(5): e15698, 2023 May.
Article in English | MEDLINE | ID: mdl-37159700

ABSTRACT

We studied the sequestration of hexavalent chromium Cr(VI) from an aqueous solution using chemically modified pomegranate peel (CPP) as an efficient bio-adsorbent. The synthesized material was characterized by X-ray diffraction spectroscopy (XRD), Fourier-transform infrared spectroscopy (FTIR), energy dispersive spectroscopy (EDS), and scanning electron microscopy (SEM). The impacts of parameters like solution pH, Cr(VI) concentration, contact time, and adsorbent dosage were investigated. Experimental results of the isotherm studies and adsorption kinetics were found agreeing to the Langmuir isotherm model and pseudo-second-order kinetics, respectively. The CPP showed appreciable Cr(VI) remediation capacity with a maximal loading capacity of 82.99 mg/g at pH 2.0, which was obtained in 180 min at room temperature. Thermodynamic studies revealed the biosorption process as spontaneous, feasible, and thermodynamically favorable. The spent adsorbent was eventually regenerated and reused, and the safe disposal of Cr(VI) was ensured. The study revealed that the CPP can be effectively employed as an affordable sorbent for the excision of Cr(VI) from water.

2.
Environ Sci Pollut Res Int ; 30(19): 54682-54693, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36881243

ABSTRACT

The newly developed aminated maize stalk (AMS) was prepared by a chemical process using charred maize stalk (CMS). The AMS was used for the removal of nitrate and nitrite ions from aqueous media. The effects of initial anion concentration, contact time, and pH were studied by the batch method. The prepared adsorbent was characterized by FT-IR, XRD, FE-SEM , and elemental analysis. The concentration of the nitrate and nitrite solution before and after was determined with the help of a UV-Vis spectrophotometer. The maximum adsorption capacities were found to be 294.11 mg/g for nitrate and 232.55 mg/g for nitrite, respectively, at pH 5 for both ions attaining equilibrium within 60 min. The BET surface area of AMS was found to be 25.3 m2/g with a pore volume of 0.02cc/g. The pseudo-second-order kinetics model fit well, and the adsorption data supported the Langmuir isotherm. The findings revealed that AMS has a high capability for removing nitrate (NO3-) and nitrite (NO2-) ions from their aqueous solutions.


Subject(s)
Nitrates , Water Pollutants, Chemical , Nitrates/chemistry , Nitrites/chemistry , Zea mays , Adsorption , Spectroscopy, Fourier Transform Infrared , Solutions , Anions , Water/chemistry , Kinetics , Hydrogen-Ion Concentration , Water Pollutants, Chemical/chemistry
3.
Heliyon ; 9(2): e13465, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36816270

ABSTRACT

Pomelo, Citrus maxima, peel was chemically modified with lime water and then loaded with Fe(III) to develop anion exchange sites for effective sequestration of As(V) from water. Biosorbent characterizations were done by using FTIR, SEM, XRD, EDX, and Boehm's titration. The batch biosorption studies were carried out at various pHs using modified and non-modified biosorbents and optimum biosorption of As(V) occurred at acidic pH (3.0-5.0) for both the biosorbents. A kinetic study showed a fast biosorption rate and obtained results fitted well with the pseudo-second-order (PSO) model. When isotherm data were modeled using the Langmuir and Freundlich isotherm models, the Langmuir isotherm model fit the data better and produced maximal As(V) biosorption capacities of 0.72 ± 03, 0.86 ± 06, and 0.95 ± 05 mmol/g at temperatures 293± 1K, 298± 1K and 303± 1K, respectively. Desorptionof As(V) was effective using 0.1 M NaOH in batch mode. Negative values of ΔG° for all temperatures with positive ΔH° confirmed the spontaneous and endothermic nature of As(V) biosorption. The existence of co-existing chloride (Cl-), nitrate (NO3 -), sodium (Na+), and calcium (Ca2+) showed insignificant interference whereas a high concentration of sulphate (SO4 2-) and phosphate (PO4 3-) significantly lowered As(V) biosorption percentage. Arsenic concentrations in actual arsenic polluted groundwater could be reduced to the WHO drinking water standard (10 µg/L) by using only 1 g/L of investigated Fe(III)-SPP. The dynamic biosorption of As(V) in a fixed bed system showed that Fe(III)-SPP was effective also in continuous mode and different design parameters for fixed bed system were determined using Thomas, Adams-Bohart, BDST, and Yoon-Nelson models. Therefore, from all of these results it is suggested that Fe(III)-SPP investigated in this study can be a potential, low cost and environmentally benign biosorbent material for an effective removal of trace amounts of arsenic from polluted water.

4.
RSC Adv ; 12(46): 29865-29877, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36321102

ABSTRACT

The main target of this study was to evaluate the efficiency of charred xanthated sugarcane bagasse (CXSB) and charred sugarcane bagasse (CSB) in the removal of Hg(ii) ions from aqueous media. Batch experiments were performed to study the experimental parameters such as effects of pH, concentration, contact time and temperature. The adsorption velocity of Hg(ii) onto CSB and CXSB was fast and reached equilibrium within 60 minutes. Isotherm and kinetic studies showed that Hg(ii) uptake using both the biosorbents followed Langmuir isotherm and pseudo second order kinetics. The maximum adsorption capacity of Hg(ii) at optimum pH 4.5 onto CSB and CXSB was found to be 125 mg g-1 and 333.34 mg g-1, respectively. A negative value of ΔG° and positive ΔS° value (0.24 kJ mol-1 for CSB and 0.18 kJ mol-1 for CXSB) for both the biosorbents confirm the spontaneous nature of Hg(ii) adsorption. A positive value of ΔH° (52.06 kJ mol-1 for CSB and 30.82 kJ mol-1 for CXSB) suggests the endothermic nature of biosorption. The investigated results shows that CXSB compared to CSB can be used as a low cost and environmentally benign bio-adsorbent for the removal of Hg(ii) ions from aqueous solutions.

5.
Heliyon ; 8(8): e10305, 2022 Aug.
Article in English | MEDLINE | ID: mdl-36090219

ABSTRACT

A new biosorbent for Cr(VI) sequestration was investigated from betel nut waste (BNW), Areca catechu, by H2SO4 charring. Aqueous insolubility and Cr(VI) uptake capacity of native BNW were potentially improved after H2SO4 modification due to cross-linking reaction of betel nut cellulose, thereby creating suitable complexation sites for Cr(VI) ion removal. Langmuir isotherm and pseudo second order (PSO) kinetic models described well with the experimental data. A trace amount of Cr(VI) was effectively removed below the safe drinking water standard (WHO, 0.05 mg/L) using charred BNW (CBNW). The negative value of ΔG° evaluated for all the temperatures suggested the spontaneous nature of Cr(VI) sequestration and positive value of ΔH° (42.43±0.13 kJ/mol) confirmed an endothermic reaction. Co-existing NO 3 - , Cl-, Na+ and Zn2+ ions showed negligible interferences, whereas SO 4 2 - and PO 4 3 - notably reduced Cr(VI) uptake capacity of CBNW. More than 98% of adsorbed Cr(VI) was desorbed using 1M NaOH solution. A light yellow precipitate of BaCrO4 was recovered from the desorbed solution after precipitation with BaCl2 solution. Therefore, the CBNW biosorbent investigated in this work is expected to be a promising material for Cr(VI) sequestration and its recovery from polluted water.

6.
Materials (Basel) ; 10(8)2017 Jul 26.
Article in English | MEDLINE | ID: mdl-28773217

ABSTRACT

Biosorbents for remediating aquatic environmental media polluted with hazardous heavy metals and metalloids such as Pb(II), Cr(VI), Sb(III and V), and As(III and V) were prepared from lignin waste, orange and apple juice residues, seaweed and persimmon and grape wastes using simple and cheap methods. A lignophenol gel such as lignocatechol gel was prepared by immobilizing the catechol functional groups onto lignin from sawdust, while lignosulfonate gel was prepared directly from waste liquor generated during pulp production. These gels effectively removed Pb(II). Orange and apple juice residues, which are rich in pectic acid, were easily converted using alkali (e.g., calcium hydroxide) into biosorbents that effectively removed Pb(II). These materials also effectively removed Sb(III and V) and As(III and V) when these were preloaded with multi-valent metal ions such as Zr(IV) and Fe(III). Similar biosorbents were prepared from seaweed waste, which is rich in alginic acid. Other biosorbents, which effectively removed Cr(VI), were prepared by simply treating persimmon and grape wastes with concentrated sulfuric acid.

7.
Bioresour Technol ; 148: 221-7, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24055965

ABSTRACT

A green seaweed, Ulva japonica, was modified by loading multivalent metal ions such as Zr(IV) and La(III) after CaCl2 cross-linking to produce metal loaded cross-linked seaweed (M-CSW) adsorbents, which were characterized by elemental analysis, functional groups identification, and metal content determination. Maximum sorption potential for fluoride was drastically increased after La(III) and Zr(IV) loading, which were evaluated as 0.58 and 0.95 mmol/g, respectively. Loaded fluoride was quantitatively desorbed by using dilute alkaline solution for its regeneration. Mechanism of fluoride adsorption was inferred in terms of ligand exchange reaction between hydroxyl ion on co-ordination sphere of the loaded metal ions of M-CSW and fluoride ion in aqueous solution. Application of M-CSW for the treatment of actual waste plating solution exhibited successful removal of fluoride to clear the effluent and environmental standards in Japan, suggesting high possibility of its application for the treatment of fluoride rich waste water.


Subject(s)
Alginates/chemistry , Anion Exchange Resins/chemistry , Fluorides/isolation & purification , Ulva/chemistry , Water Pollutants, Chemical/isolation & purification , Adsorption , Batch Cell Culture Techniques , Cross-Linking Reagents/chemistry , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Hydrogen-Ion Concentration , Kinetics , Seaweed/chemistry , Solutions , Spectrophotometry, Infrared , Temperature , Wastewater/chemistry
8.
Bioresour Technol ; 101(6): 2067-9, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20006923

ABSTRACT

A new process for the xanthation of sugarcane (Saccharum officinarum) bagasse was investigated for the separation of cadmium, lead, nickel, zinc and copper from their aqueous solutions. Adsorption capacity of the charred xanthated sugarcane bagasse (CXSB) was found to be significantly more than the several biosorbents reported in the literatures. The modified material was characterized by FTIR and elemental analysis. The kinetics of sorption of the tested metals was fast, reaching equilibrium within 20-40 min. The maximum adsorption capacities evaluated in terms of mol/kg dry gel were 1.95 for Cd(II), 1.58 for Pb(II), 2.52 for Ni(II), 2.40 for Zn(II) and 2.91 for Cu(II), respectively. The high adsorption capacity and the kinetics results indicated that CXSB can be used as the selective adsorbent for the removal of these respective metal ions from wastewater.


Subject(s)
Biodegradation, Environmental , Biotechnology/methods , Cellulose/metabolism , Metals, Heavy/chemistry , Saccharum/chemistry , Adsorption , Cadmium/analysis , Copper/analysis , Kinetics , Lead/analysis , Nickel/analysis , Spectroscopy, Fourier Transform Infrared/methods , Water Pollutants, Chemical/analysis , Water Purification/methods , Zinc/analysis
9.
Bioresour Technol ; 99(7): 2436-41, 2008 May.
Article in English | MEDLINE | ID: mdl-17604621

ABSTRACT

The present work elucidates environmental friendly removal process of heavy metals by using biomass waste and natural product. The process consists of the following three steps: (1) leaching of all metals including heavy metals by dilute sulfuric acid, (2) removal of turbid organic materials from the leach liquor by means of coagulation using astringent persimmon extract enriched with persimmon tannin leaving all heavy metal ions in the leach liquor and (3) adsorptive removal of heavy metals by means of adsorption onto the gel prepared from apple waste. The operational conditions at these three steps were discussed in detail, among which the pH adjustment is the key factor; i.e. the lower the pHs the higher the efficiency of the leaching, while reverse was the case for the adsorption.


Subject(s)
Animal Feed , Fertilizers , Metals, Heavy/isolation & purification , Shellfish , Adsorption , Animals
10.
Bioresour Technol ; 99(1): 32-7, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17267212

ABSTRACT

An efficient and cost effective non-conventional adsorbent has been prepared from seaweed Laminaria japonica by crosslinking with epichlorohydrin. Its adsorption behavior for trivalent and divalent metal ions was studied and it was found to exhibit excellent selectivity towards several metal ions. As a typical example, binary mixture of Pb(II) and Zn(II) was studied by using a packed column, indicating that the Pb(II) ion can be easily separated from its mixture with a concentration factor of 74 times. The maximum adsorption capacity for Pb(II), Cd(II), Fe(III) was found to be 1.35, 1.1, 1.53 mol kg(-1), respectively, while 0.8 7 mol kg(-1) for both La(III) and Ce(III) from the single metal ion solution according to the adsorption isotherm. The obtained values are comparable to the commercially available synthetic chelating resins.


Subject(s)
Cross-Linking Reagents/chemistry , Laminaria/chemistry , Metals, Heavy/chemistry , Metals, Heavy/pharmacokinetics , Seaweed/chemistry , Adsorption , Alginates/chemistry , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Hydrogen-Ion Concentration , Ions , Water/chemistry
11.
J Hazard Mater ; 154(1-3): 1066-74, 2008 Jun 15.
Article in English | MEDLINE | ID: mdl-18093733

ABSTRACT

Orange waste, produced during juicing has been loaded with zirconium(IV) so as to examine its adsorption behavior for both As(V) and As(III) from an aquatic environment. Immobilization of zirconium onto the orange waste creates a very good adsorbent for arsenic. Adsorption kinetics of As(V) at different concentrations are well described in terms of pseudo-second-order rate equation with respect to adsorption capacity and correlation coefficients. Arsenate was strongly adsorbed in the pH range from 2 to 6, while arsenite was strongly adsorbed between pH 9 and 10. Moreover, equimolar (0.27 mM) addition of other anionic species such as chloride, carbonate, and sulfate had no influence on the adsorption of arsenate and arsenite. The maximum adsorption capacity of the Zr(IV)-loaded SOW gel was evaluated as 88 mg/g and 130 mg/g for As(V) and As(III), respectively. Column adsorption tests suggested that complete removal of arsenic was achievable at up to 120 Bed Volumes (BV) for As(V) and 8 0BV for As(III). Elution of both arsenate and arsenite was accomplished using 1 M NaOH without any leakage of the loaded zirconium. Thus this efficient and abundant bio-waste could be successfully employed for the remediation of an aquatic environment polluted with arsenic.


Subject(s)
Arsenates/chemistry , Arsenites/chemistry , Citrus sinensis , Water Pollutants, Chemical/chemistry , Water Purification/methods , Zirconium/chemistry , Adsorption , Beverages , Food Industry , Gels , Hydrogen-Ion Concentration , Industrial Waste , Kinetics , Mining , Waste Products , Water Supply
12.
J Colloid Interface Sci ; 312(2): 214-23, 2007 Aug 15.
Article in English | MEDLINE | ID: mdl-17485100

ABSTRACT

Phosphate removal from an aquatic environment was investigated using La(III)-, Ce(III)- and Fe(III)-loaded orange waste. The adsorption isotherm, the kinetics of adsorption and the effect of pH on the removal of phosphate have been examined. The % removal of phosphate using La(III)- and Ce(III)-loaded orange waste gel increases with increasing pH within the range of 5-7 but decreases when the pH is increased beyond this range. The equilibrium sorption was observed to be in accordance with Langmuir type adsorption and the maximum adsorption capacity was evaluated as 13.94 mg P/g of dry gel for all the three types of gels. Kinetic studies revealed that 15 h is enough to reach equilibrium in batch experiments. Fixed bed sorption experiments confirmed the continuous phosphate adsorption and elution capability of such simply modified gels. Due to their low cost, availability and significantly high adsorption capability, metal-loaded SOW gels can be effectively employed for the removal of phosphate from water.

13.
Water Res ; 37(20): 4945-53, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14604641

ABSTRACT

Cellulose and orange waste were chemically modified by means of phosphorylation. The chemically modified gels were further loaded with iron(III) in order to create a suitable chelating environment for arsenate and arsenite removal. The loading capacity for iron(III) on the gel prepared from orange waste (POW) was 1.21 mmol g(-1) compared with 0.96 mmol g(-1) for the gel prepared from cellulose (PC). Removal tests of arsenic with the iron(III)-loaded gel were carried out batchwise and by using a column. Arsenite removal was favored under alkaline condition for both PC and POW gels, however, the POW gel showed some removal capability even at neutral pH. On contrary, arsenate removal took place under acidic conditions at pH=2-3 and 2-6 for the PC and POW gels, respectively. Since iron(III) loading is higher on the POW gel than on the PC gel greater arsenic removal has been achieved by the POW gel compared with the PC gel. It can be concluded that the POW gel can be used for the removal and recovery of both arsenite and arsenate from arsenic contaminated wastewater.


Subject(s)
Arsenates/isolation & purification , Arsenites/isolation & purification , Water Purification/methods , Adsorption , Arsenates/chemistry , Arsenites/chemistry , Cellulose/chemistry , Chelating Agents/chemistry , Fruit/chemistry , Iron/chemistry , Refuse Disposal
SELECTION OF CITATIONS
SEARCH DETAIL