Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 6(12): eaay3704, 2020 03.
Article in English | MEDLINE | ID: mdl-32219160

ABSTRACT

Human and murine skin wounding commonly results in fibrotic scarring, but the murine wounding model wound-induced hair neogenesis (WIHN) can frequently result in a regenerative repair response. Here, we show in single-cell RNA sequencing comparisons of semi-regenerative and fibrotic WIHN wounds, increased expression of phagocytic/lysosomal genes in macrophages associated with predominance of fibrotic myofibroblasts in fibrotic wounds. Investigation revealed that macrophages in the late wound drive fibrosis by phagocytizing dermal Wnt inhibitor SFRP4 to establish persistent Wnt activity. In accordance, phagocytosis abrogation resulted in transient Wnt activity and a more regenerative healing. Phagocytosis of SFRP4 was integrin-mediated and dependent on the interaction of SFRP4 with the EDA splice variant of fibronectin. In the human skin condition hidradenitis suppurativa, phagocytosis of SFRP4 by macrophages correlated with fibrotic wound repair. These results reveal that macrophages can modulate a key signaling pathway via phagocytosis to alter the skin wound healing fate.


Subject(s)
Macrophages/immunology , Macrophages/metabolism , Phagocytosis/immunology , Proto-Oncogene Proteins/metabolism , Wnt Proteins/metabolism , Wnt Signaling Pathway , Wound Healing , Fibroblasts/metabolism , Fibrosis , Humans , Proteolysis , Skin/immunology , Skin/injuries , Skin/metabolism , Wound Healing/immunology
2.
Cell Rep ; 20(13): 3199-3211, 2017 Sep 26.
Article in English | MEDLINE | ID: mdl-28954235

ABSTRACT

Despite numerous observations linking protracted exposure to low-dose (LD) radiation and leukemia occurrence, the effects of LD irradiation on hematopoietic stem cells (HSCs) remain poorly documented. Here, we show that adult HSCs are hypersensitive to LD irradiation. This hyper-radiosensitivity is dependent on an immediate increase in the levels of reactive oxygen species (ROS) that also promotes autophagy and activation of the Keap1/Nrf2 antioxidant pathway. Nrf2 activation initially protects HSCs from the detrimental effects of ROS, but protection is transient, and increased ROS levels return, promoting a long-term decrease in HSC self-renewal. In vivo, LD total body irradiation (TBI) does not decrease HSC numbers unless the HSC microenvironment is altered by an inflammatory insult. Paradoxically, such an insult, in the form of granulocyte colony-stimulating factor (G-CSF) preconditioning, followed by LD-TBI facilitates efficient bone marrow transplantation without myeloablation. Thus, LD irradiation has long-term detrimental effects on HSCs that may result in hematological malignancies, but LD-TBI may open avenues to facilitate autologous bone marrow transplantation.


Subject(s)
Hematopoietic Stem Cells/metabolism , Oxidative Stress/genetics , Whole-Body Irradiation/methods , Animals , Humans , Mice
3.
Haematologica ; 102(7): 1161-1172, 2017 07.
Article in English | MEDLINE | ID: mdl-28385784

ABSTRACT

Although the primary origin of sickle cell disease is a hemoglobin disorder, many types of cells contribute considerably to the pathophysiology of the disease. The adhesion of neutrophils to activated endothelium is critical in the pathophysiology of sickle cell disease and targeting neutrophils and their interactions with endothelium represents an important opportunity for the development of new therapeutics. We focused on endothelin-1, a mediator involved in neutrophil activation and recruitment in tissues, and investigated the involvement of the endothelin receptors in the interaction of neutrophils with endothelial cells. We used fluorescence intravital microscopy analyses of the microcirculation in sickle mice and quantitative microfluidic fluorescence microscopy of human blood. Both experiments on the mouse model and patients indicate that blocking endothelin receptors, particularly ETB receptor, strongly influences neutrophil recruitment under inflammatory conditions in sickle cell disease. We show that human neutrophils have functional ETB receptors with calcium signaling capability, leading to increased adhesion to the endothelium through effects on both endothelial cells and neutrophils. Intact ETB function was found to be required for tumor necrosis factor α-dependent upregulation of CD11b on neutrophils. Furthermore, we confirmed that human neutrophils synthesize endothelin-1, which may be involved in autocrine and paracrine pathophysiological actions. Thus, the endothelin-ETB axis should be considered as a cytokine-like potent pro-inflammatory pathway in sickle cell disease. Blockade of endothelin receptors, including ETB, may provide major benefits for preventing or treating vaso-occlusive crises in sickle cell patients.


Subject(s)
Anemia, Sickle Cell/metabolism , Cell Adhesion , Endothelium, Vascular/metabolism , Neutrophils/metabolism , Receptor, Endothelin B/metabolism , Adolescent , Anemia, Sickle Cell/blood , Anemia, Sickle Cell/genetics , Anemia, Sickle Cell/therapy , Animals , CD11b Antigen/metabolism , Calcium/metabolism , Case-Control Studies , Cell Adhesion/drug effects , Cell Survival , Child , Child, Preschool , Disease Models, Animal , Endothelial Cells/metabolism , Endothelin A Receptor Antagonists/pharmacology , Endothelin B Receptor Antagonists/pharmacology , Endothelin-1/metabolism , Hemodynamics/drug effects , Humans , Leukocyte Count , Leukocyte Rolling , Macrophage-1 Antigen/metabolism , Mice , Neutrophil Activation , Neutrophils/immunology , Receptor, Endothelin A/metabolism , Transendothelial and Transepithelial Migration/drug effects , Transendothelial and Transepithelial Migration/immunology , Tumor Necrosis Factor-alpha/metabolism
4.
PLoS One ; 9(2): e89497, 2014.
Article in English | MEDLINE | ID: mdl-24586826

ABSTRACT

BACKGROUND: Neutrophil gelatinase-associated lipocalin (NGAL) is emerging as a mediator of various biological and pathological states. However, the specific biological role of this molecule remains unclear, as it serves as a biomarker for many conditions. The high sensitivity of NGAL as a biomarker coupled with relatively low specificity may hide important biological roles. Data point toward an acute compensatory, protective role for NGAL in response to adverse cellular stresses, including inflammatory and oxidative stress. The aim of this study was to understand whether NGAL modulates the T-cell response through regulation of the human leukocyte antigen G (HLA-G) complex, which is a mediator of tolerance. METHODOLOGY/PRINCIPAL FINDINGS: Peripheral blood mononuclear cells (PBMCs) were obtained from eight healthy donors and isolated by centrifugation on a Ficoll gradient. All donors gave informed consent. PBMCs were treated with four different concentrations of NGAL (40-320 ng/ml) in an iron-loaded or iron-free form. Changes in cell phenotype were analyzed by flow cytometry. NGAL stimulated expression of HLA-G on CD4+ T cells in a dose- and iron-dependent manner. Iron deficiency prevented NGAL-mediated effects, such that HLA-G expression was unaltered. Furthermore, NGAL treatment affected stimulation of regulatory T cells and in vitro expansion of CD4(+) CD25(+) FoxP3(+) cells. An NGAL neutralizing antibody limited HLA-G expression and significantly decreased the percentage of CD4(+) CD25(+) FoxP3(+) cells. CONCLUSIONS/SIGNIFICANCE: We provide in vitro evidence that NGAL is involved in cellular immunity. The potential role of NGAL as an immunomodulatory molecule is based on its ability to induce immune tolerance by upregulating HLA-G expression and expansion of T-regulatory cells in healthy donors. Future studies should further evaluate the role of NGAL in immunology and immunomodulation and its possible relationship to immunosuppressive therapy efficacy, tolerance induction in transplant patients, and other immunological disorders.


Subject(s)
Acute-Phase Proteins/metabolism , Lipocalins/metabolism , Proto-Oncogene Proteins/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Acute-Phase Proteins/pharmacology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Enterobactin/pharmacology , Forkhead Transcription Factors/metabolism , HLA-G Antigens/metabolism , Humans , Immunophenotyping , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Lipocalin-2 , Lipocalins/pharmacology , Lymphocyte Activation/drug effects , Proto-Oncogene Proteins/pharmacology , T-Lymphocyte Subsets , T-Lymphocytes, Regulatory/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...