Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Epilepsia ; 64(12): 3130-3142, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37731142

ABSTRACT

Focal cortical dysplasia (FCD) is the most frequent etiology of operable pharmacoresistant epilepsy in children. There is burgeoning evidence that FCD-related epilepsy is a disorder that involves distributed brain networks. Functional magnetic resonance imaging (fMRI) is a tool that allows one to infer neuronal activity and to noninvasively map whole-brain functional networks. Despite its relatively widespread availability at most epilepsy centers, the clinical application of fMRI remains mostly task-based in epilepsy. Another approach is to map and characterize cortical functional networks of individuals using resting state fMRI (rsfMRI). The focus of this scoping review is to summarize the evidence to date of investigations of the network basis of FCD-related epilepsy, and to highlight numerous potential future applications of rsfMRI in the exploration of diagnostic and therapeutic strategies for FCD-related epilepsy. There are numerous studies demonstrating a global disruption of cortical functional networks in FCD-related epilepsy. The underlying pathological subtypes of FCD influence overall functional network patterns. There is evidence that cortical functional network mapping may help to predict postsurgical seizure outcomes, highlighting the translational potential of these findings. Additionally, several studies emphasize the important effect of FCD interaction with cortical networks and the expression of epilepsy and its comorbidities.


Subject(s)
Epilepsy , Focal Cortical Dysplasia , Malformations of Cortical Development , Child , Humans , Malformations of Cortical Development/complications , Malformations of Cortical Development/diagnostic imaging , Malformations of Cortical Development/surgery , Epilepsy/diagnostic imaging , Epilepsy/etiology , Epilepsy/pathology , Brain , Magnetic Resonance Imaging/methods , Retrospective Studies
2.
Ann Clin Transl Neurol ; 10(11): 2161-2165, 2023 11.
Article in English | MEDLINE | ID: mdl-37700505

ABSTRACT

To evaluate the role of focal cortical dysplasia co-localization to cortical functional networks in the development of pharmacoresistance. One hundred thirty-six focal cortical dysplasia patients with 3.0 T or 1.5 T MRI were identified from clinical databases at Children's National Hospital. Clinico-radio-pathologic factors and network co-localization were determined. Using binomial logistic regression, limbic network co-localization (odds ratio 4.164 95% confidence interval 1.02-17.08, p = 0.048), and focal to bilateral tonic-clonic seizures (4.82, 1.30-18.03, p = 0.019) predicted pharmacoresistance. These findings provide clinicians with markers to identify patients with focal cortical dysplasia-related epilepsy at high risk of developing pharmacoresistance and should facilitate earlier epilepsy surgical evaluation.


Subject(s)
Epilepsy , Focal Cortical Dysplasia , Child , Humans , Epilepsy/drug therapy , Epilepsy/etiology , Seizures , Logistic Models , Odds Ratio
3.
Epilepsia ; 64(9): 2434-2442, 2023 09.
Article in English | MEDLINE | ID: mdl-37349955

ABSTRACT

OBJECTIVE: Focal cortical dysplasia (FCD) is the most common etiology of surgically-remediable epilepsy in children. Eighty-seven percent of patients with FCD develop epilepsy (75% is pharmacoresistant epilepsy [PRE]). Focal to bilateral tonic-clonic (FTBTC) seizures are associated with worse surgical outcomes. We hypothesized that children with FCD-related epilepsy with FTBTC seizures are more likely to develop PRE due to lesion interaction with restricted cortical neural networks. METHODS: Patients were selected retrospectively from radiology and surgical databases from Children's National Hospital. INCLUSION CRITERIA: 3T magnetic resonance imaging (MRI)-confirmed FCD from January 2011 to January 2020; ages 0 days to 22 years at MRI; and 18 months of documented follow-up. FCD dominant network (Yeo 7-network parcellation) was determined. Association of FTBTC seizures with epilepsy severity, surgical outcome, and dominant network was tested. Binomial regression was used to evaluate predictors (FTBTC seizures, age at seizure onset, pathology, hemisphere, lobe) of pharmacoresistance and Engel outcome. Regression was used to evaluate predictors (age at seizure onset, pathology, lobe, percentage default mode network [DMN] overlap) of FTBTC seizures. RESULTS: One hundred seventeen patients had a median age at seizure onset of 3.00 years (interquartile range [IQR] .42-5.59 years). Eighty-three patients had PRE (71%); 34 had pharmacosensitive epilepsy (PSE) (29%). Twenty patients (17%) had FTBTC seizures. Seventy-three patients underwent epilepsy surgery. Multivariate regression showed that FTBTC seizures are associated with an increased risk of PRE (odds ratio [OR] 6.41, 95% confidence interval [CI] 1.21-33.98, p = .02). FCD hemisphere/lobe was not associated with PRE. Percentage DMN overlap predicts FTBTC seizures. Seventy-two percent (n = 52) overall and 53% (n = 9) of patients with FTBTC seizures achieved Engel class I outcome. SIGNIFICANCE: In a heterogeneous population of surgical and non-operated patients with FCD-related epilepsy, the presence of FTBTC seizures is associated with a tremendous risk of PRE. This finding is a recognizable marker to help neurologists identify those children with FCD-related epilepsy at high risk of PRE and can flag patients for earlier consideration of potentially curative surgery. The FCD-dominant network also contributes to FTBTC seizure clinical expression.


Subject(s)
Epilepsy , Focal Cortical Dysplasia , Malformations of Cortical Development , Child , Humans , Retrospective Studies , Treatment Outcome , Seizures/diagnostic imaging , Seizures/etiology , Seizures/surgery , Epilepsy/diagnostic imaging , Epilepsy/drug therapy , Epilepsy/etiology , Magnetic Resonance Imaging , Malformations of Cortical Development/complications , Malformations of Cortical Development/diagnostic imaging , Malformations of Cortical Development/surgery
4.
medRxiv ; 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36798218

ABSTRACT

Mesial temporal lobe epilepsy (mTLE) is associated with variable dysfunction beyond the temporal lobe. We used functional anomaly mapping (FAM), a multivariate machine learning approach to resting state fMRI analysis to measure subcortical and cortical functional aberrations in patients with mTLE. We also examined the value of individual FAM in lateralizing the hemisphere of seizure onset in mTLE patients. Methods: Patients and controls were selected from an existing imaging and clinical database. After standard preprocessing of resting state fMRI, time-series were extracted from 400 cortical and 32 subcortical regions of interest (ROIs) defined by atlases derived from functional brain organization. Group-level aberrations were measured by contrasting right (RTLE) and left (LTLE) patient groups to controls in a support vector regression models, and tested for statistical reliability using permutation analysis. Individualized functional anomaly maps (FAMs) were generated by contrasting individual patients to the control group. Half of patients were used for training a classification model, and the other half for estimating the accuracy to lateralize mTLE based on individual FAMs. Results: Thirty-two right and 14 left mTLE patients (33 with evidence of hippocampal sclerosis on MRI) and 94 controls were included. At group levels, cortical regions affiliated with limbic and somatomotor networks were prominent in distinguishing RTLE and LTLE from controls. At individual levels, most TLE patients had high anomaly in bilateral mesial temporal and medial parietooccipital default mode regions. A linear support vector machine trained on 50% of patients could accurately lateralize mTLE in remaining patients (median AUC =1.0 [range 0.97-1.0], median accuracy = 96.87% [85.71-100Significance: Functional anomaly mapping confirms widespread aberrations in function, and accurately lateralizes mTLE from resting state fMRI. Future studies will evaluate FAM as a non-invasive localization method in larger datasets, and explore possible correlations with clinical characteristics and disease course.

5.
Clin Neurophysiol ; 146: 109-117, 2023 02.
Article in English | MEDLINE | ID: mdl-36608528

ABSTRACT

OBJECTIVE: The association between postictal electroencephalogram (EEG) suppression (PES), autonomic dysfunction, and Sudden Unexpected Death in Epilepsy (SUDEP) remains poorly understood. We compared PES on simultaneous intracranial and scalp-EEG and evaluated the association of PES with postictal heart rate variability (HRV) and SUDEP outcome. METHODS: Convulsive seizures were analyzed in patients with drug-resistant epilepsy at 5 centers. Intracranial PES was quantified using the Hilbert transform. HRV was quantified using root mean square of successive differences of interbeat intervals, low-frequency to high-frequency power ratio, and RR-intervals. RESULTS: There were 64 seizures from 63 patients without SUDEP and 11 seizures from 6 SUDEP patients. PES occurred in 99% and 87% of seizures on intracranial-EEG and scalp-EEG, respectively. Mean PES duration in intracranial and scalp-EEG was similar. Intracranial PES was regional (<90% of channels) in 46% of seizures; scalp PES was generalized in all seizures. Generalized PES showed greater decrease in postictal parasympathetic activity than regional PES. PES duration and extent were similar between patients with and without SUDEP. CONCLUSIONS: Regional intracranial PES can be present despite scalp-EEG demonstrating generalized or no PES. Postictal autonomic dysfunction correlates with the extent of PES. SIGNIFICANCE: Intracranial-EEG demonstrates changes in autonomic regulatory networks not seen on scalp-EEG.


Subject(s)
Epilepsy , Primary Dysautonomias , Sudden Unexpected Death in Epilepsy , Humans , Electrocorticography , Electroencephalography , Seizures/diagnosis , Death, Sudden/etiology
6.
Neurology ; 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35985831

ABSTRACT

BACKGROUND AND OBJECTIVES: Focal cortical dysplasia is the most common cause of surgically-remediable epilepsy in children. Little is known about the risk factors for the timing and development of pharmacoresistance in this population. This study sought to evaluate the prevalence and risk factors for pharmacoresistance in pediatric FCD-related epilepsy. METHODS: In this retrospective single-center cohort design, patients were identified from search of centralized radiology report database and a central epilepsy surgical database. Inclusion criteria consisted of: 3T MRI-confirmed FCD from January, 2011 to January, 2020; ages 0 days to 22 years at MRI; at least 18 months of documented follow-up after MRI, unless had single seizure or incidentally discovered FCD. Records were excluded if there was dual pathology (except for mesial temporal sclerosis), hemimegalencephaly, or tuberous sclerosis complex present in imaging or history. RESULTS: One hundred forty-three patients with confirmed FCD met inclusion criteria. One hundred twenty-four children had epilepsy (87% of FCD patients) with median age of seizure onset 2.7 years (IQR 0.75-6 years, range 0 to 17 years). Twelve children (8.5%) had a single lifetime seizure (provoked or unprovoked) or recurrent provoked seizures. Seven children (4.9%) had incidental FCD. Ninety-two patients (74%) of those with epilepsy met criteria for pharmacoresistance. Of children with epilepsy of all types, 93 children (75%) were seizure-free at the last visit; Eighty-two patients underwent epilepsy surgery, of whom 59 (72%) achieved seizure freedom. 7% (9/124) achieved seizure freedom with a second ASM, and 5.6% (7/124) with a third or more ASMs. Failure of only one antiseizure medication is associated with enormous increased incidence and earlier development of pharmacoresistance (OR 346, 95% CI 19.6-6100). Cox regression showed FCD lobar location, pathologic subtype, and age of seizure onset are not. CONCLUSIONS: Failure of one antiseizure medication is associated with substantial risk of pharmacoresistance. These data support an operational re-definition of pharmacoresistance, for surgical planning, in FCD-related epilepsy to the failure of one antiseizure medication, and support early, potentially curative surgery to improve outcomes in this patient population.

7.
J Neuroimaging ; 32(6): 1201-1210, 2022 11.
Article in English | MEDLINE | ID: mdl-35881496

ABSTRACT

BACKGROUND AND PURPOSE: Task-based functional MRI (fMRI) mapping of the motor function prior to epilepsy surgery has limitations in children with epilepsy. We present a data-driven method to automatically delineate the motor cortex using task-free, resting-state fMRI (rsfMRI) data. METHODS: We used whole-brain rsfMRI for independent component analysis (ICA). A template matching process with Discriminability Index-based Component Identification score was used for each participant to select and combine motor ICA components in their native brain space, resulting in a whole-brain ICA Motor Map (wIMM). We validated wIMM by comparing individual results with bilateral finger-tapping motor task fMRI activation, and evaluated its reproducibility in controls. RESULTS: Data from 64 patients and 12 controls were used to generate group wIMM maps. The hit rate between wIMM and motor task activation ranged from 60% to 79% across all participants. Sensitivity of wIMM for capturing the task activation peak was 87.5% among 32 patients and 100% in 12 controls with available motor task results. We also showed high similarity in repeated runs in controls. CONCLUSIONS: Our results show the sensitivity and reproducibility of an automated motor mapping method based on ICA analysis of rsfMRI in children with epilepsy. The ICA maps may provide different, but useful, information than task fMRI. Future studies will expand our method to mapping other brain functions, and may lead to a surgical planning tool for patients who cannot perform task fMRI and help predict their postsurgical function.


Subject(s)
Epilepsies, Partial , Epilepsy , Motor Cortex , Child , Humans , Motor Cortex/diagnostic imaging , Reproducibility of Results , Magnetic Resonance Imaging/methods , Brain Mapping/methods , Brain , Epilepsies, Partial/diagnostic imaging
8.
Ann Neurol ; 92(3): 503-511, 2022 09.
Article in English | MEDLINE | ID: mdl-35726354

ABSTRACT

OBJECTIVE: The purpose of this study was to evaluate if focal cortical dysplasia (FCD) co-localization to cortical functional networks is associated with the temporal distribution of epilepsy onset in FCD. METHODS: International (20 center), retrospective cohort from the Multi-Centre Epilepsy Lesion Detection (MELD) project. Patients included if >3 years old, had 3D pre-operative T1 magnetic resonance imaging (MRI; 1.5 or 3 T) with radiologic or histopathologic FCD after surgery. Images processed using the MELD protocol, masked with 3D regions-of-interest (ROI), and co-registered to fsaverage_sym (symmetric template). FCDs were then co-localized to 1 of 7 distributed functional cortical networks. Negative binomial regression evaluated effect of FCD size, network, histology, and sulcal depth on age of epilepsy onset. From this model, predictive age of epilepsy onset was calculated for each network. RESULTS: Three hundred eighty-eight patients had median age seizure onset 5 years (interquartile range [IQR] = 3-11 years), median age at pre-operative scan 18 years (IQR = 11-28 years). FCDs co-localized to the following networks: limbic (90), default mode (87), somatomotor (65), front parietal control (52), ventral attention (32), dorsal attention (31), and visual (31). Larger lesions were associated with younger age of onset (p = 0.01); age of epilepsy onset was associated with dominant network (p = 0.04) but not sulcal depth or histology. Sensorimotor networks had youngest onset; the limbic network had oldest age of onset (p values <0.05). INTERPRETATION: FCD co-localization to distributed functional cortical networks is associated with age of epilepsy onset: sensory neural networks (somatomotor and visual) with earlier onset, and limbic latest onset. These variations may reflect developmental differences in synaptic/white matter maturation or network activation and may provide a biological basis for age-dependent epilepsy onset expression. ANN NEUROL 2022;92:503-511.


Subject(s)
Epilepsy , Malformations of Cortical Development , Child , Child, Preschool , Epilepsy/complications , Epilepsy/etiology , Humans , Magnetic Resonance Imaging/methods , Malformations of Cortical Development/complications , Malformations of Cortical Development/diagnostic imaging , Retrospective Studies , Treatment Outcome
9.
Epilepsy Behav ; 130: 108667, 2022 05.
Article in English | MEDLINE | ID: mdl-35344808

ABSTRACT

OBJECTIVE: Pharmacoresistant bilateral mesial temporal lobe epilepsy often implies poor resective surgical candidacy. Low-frequency stimulation of a fiber tract connected to bilateral hippocampi, the fornicodorsocommissural tract, has been shown to be safe and efficacious in reducing seizures in a previous short-term study. Here, we report a single-blinded, within-subject control, long-term deep-brain stimulation trial of low-frequency stimulation of the fornicodorsocommissural tract in bilateral mesial temporal lobe epilepsy. Outcomes of interest included safety with respect to verbal memory scores and reduction of seizure frequency. METHODS: Our enrollment goal was 16 adult subjects to be randomized to 2-Hz or 5-Hz low-frequency stimulation of the fornicodorsocommissural tract starting at 2 mA. The study design consisted of four two-month blocks of stimulation with a 50%-duty cycle, alternating with two-month blocks of no stimulation. RESULTS: We terminated the study after enrollment of five subjects due to slow accrual. Fornicodorsocommissural tract stimulation elicited bilateral hippocampal evoked responses in all subjects. Three subjects underwent implantation of pulse generators and long-term low-frequency stimulation with mean monthly seizures of 3.14 ±â€¯2.67 (median 3.0 [IQR 1-4.0]) during stimulation-off blocks, compared with 0.96 ±â€¯1.23 (median 1.0 [IQR 0-1.0]) during stimulation-on blocks (p = 0.0005) during the blinded phase. Generalized Estimating Equations showed that low-frequency stimulation reduced monthly seizure-frequency by 0.71 per mA (p < 0.001). Verbal memory scores were stable with no psychiatric complications or other adverse events. SIGNIFICANCE: The results demonstrate feasibility of stimulating both hippocampi using a single deep-brain stimulation electrode in the fornicodorsocommissural tract, efficacy of low-frequency stimulation in reducing seizures, and safety as regards verbal memory.


Subject(s)
Deep Brain Stimulation , Epilepsy, Temporal Lobe , Adult , Deep Brain Stimulation/methods , Epilepsy, Temporal Lobe/complications , Epilepsy, Temporal Lobe/therapy , Hippocampus/physiology , Humans , Seizures/therapy , Treatment Outcome
10.
Epilepsia ; 63(3): 629-640, 2022 03.
Article in English | MEDLINE | ID: mdl-34984672

ABSTRACT

OBJECTIVE: This study was undertaken to identify shared functional network characteristics among focal epilepsies of different etiologies, to distinguish epilepsy patients from controls, and to lateralize seizure focus using functional connectivity (FC) measures derived from resting state functional magnetic resonance imaging (MRI). METHODS: Data were taken from 103 adult and 65 pediatric focal epilepsy patients (with or without lesion on MRI) and 109 controls across four epilepsy centers. We used three whole-brain FC measures: parcelwise connectivity matrix, mean FC, and degree of FC. We trained support vector machine models with fivefold cross-validation (1) to distinguish patients from controls and (2) to lateralize the hemisphere of seizure onset in patients. We reported the regions and connections with the highest importance from each model as the common FC differences between the compared groups. RESULTS: FC measures related to the default mode and limbic networks had higher importance relative to other networks for distinguishing epilepsy patients from controls. In lateralization models, regions related to somatosensory, visual, default mode, and basal ganglia showed higher importance. The epilepsy versus control classification model trained using a 400-parcel connectivity matrix achieved a median testing accuracy of 75.6% (median area under the curve [AUC] = .83) in repeated independent testing. Lateralization accuracy using the 400-parcel connectivity matrix reached a median accuracy of 64.0% (median AUC = .69). SIGNIFICANCE: Machine learning models revealed common FC alterations in a heterogeneous group of patients with focal epilepsies. The distribution of the most altered regions supports the hypothesis that shared functional alteration exists beyond the seizure onset zone and its epileptic network. We showed that FC measures can distinguish patients from controls, and further lateralize focal epilepsies. Future studies are needed to confirm these findings by using larger numbers of epilepsy patients.


Subject(s)
Epilepsies, Partial , Adult , Brain/diagnostic imaging , Brain Mapping , Child , Epilepsies, Partial/diagnostic imaging , Humans , Machine Learning , Magnetic Resonance Imaging/methods , Seizures
11.
Brain Imaging Behav ; 16(3): 1465-1494, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34786666

ABSTRACT

Functional neuroimaging modalities have enhanced our understanding of juvenile myoclonic epilepsy (JME) underlying neural mechanisms. Due to its non-invasive, sensitive and analytical nature, functional magnetic resonance imaging (fMRI) provides valuable insights into relevant functional brain networks and their segregation and integration properties. We systematically reviewed the contribution of resting-state and task-based fMRI to the current understanding of the pathophysiology and the patterns of seizure propagation in JME Altogether, despite some discrepancies, functional findings suggest that corticothalamo-striato-cerebellar network along with default-mode network and salience network are the most affected networks in patients with JME. However, further studies are required to investigate the association between JME's main deficiencies, e.g., motor and cognitive deficiencies and fMRI findings. Moreover, simultaneous electroencephalography-fMRI (EEG-fMRI) studies indicate that alterations of these networks play a role in seizure modulation but fall short of identifying a causal relationship between altered functional properties and seizure propagation. This review highlights the complex pathophysiology of JME, which necessitates the design of more personalized diagnostic and therapeutic strategies in this group.


Subject(s)
Myoclonic Epilepsy, Juvenile , Brain/diagnostic imaging , Electroencephalography/methods , Humans , Magnetic Resonance Imaging/methods , Myoclonic Epilepsy, Juvenile/diagnostic imaging , Seizures
12.
Neurohospitalist ; 12(1): 8-12, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34950380

ABSTRACT

INTRODUCTION: Seizures are a common complication after an ischemic stroke. Electroencephalography can assist with the diagnosis of seizures however, the diagnostic yield of its use when seizure is suspected in the setting of acute ischemic stroke is unknown. We aim to evaluate the yield and cost of EEG in the acute ischemic stroke setting. METHODS: We conducted a retrospective chart review of patients admitted to a single academic tertiary care center in the United States between September 1, 2015 to November 30, 2019 with a primary diagnosis of acute ischemic stroke and who were monitored on electroencephalography (EEG) for suspected seizures (total number of 70 patients). The primary outcome was how often EEG monitoring changed clinical management defined as starting, stopping, or changing the dose of an anti-epileptic drug. Secondary analysis was estimating the cost of EEG monitoring per change in management. RESULTS: We identified 126 patients admitted with acute ischemic stroke who underwent EEG of which 70 met all inclusion and exclusion criteria. EEG monitoring resulted in a change in management in 22 patients (31%). Predictors associated with EEG monitoring resulting in a change in management were admission to the ICU, pre-existing atrial fibrillation, and symptomatic hemorrhagic transformation. Estimated cost of EEG per change in management was $1374.96 USD. CONCLUSION: EEG monitoring resulted in a changed management in nearly one-third of patients admitted with acute ischemic stroke suspected of having seizures.

13.
J Neuroimaging ; 32(2): 292-299, 2022 03.
Article in English | MEDLINE | ID: mdl-34964194

ABSTRACT

BACKGROUND AND PURPOSE: MRI has a crucial role in presurgical evaluation of drug-resistant focal epilepsy patients. Whether and how much 7T MRI further improves presurgical diagnosis compared to standard of care 3T MRI remains to be established. We investigate the added value 7T MRI offers in surgical candidates with remaining clinical uncertainty after 3T MRI. METHODS: 7T brain MRI was obtained on sequential patients with drug-resistant focal epilepsy undergoing presurgical evaluation at a comprehensive epilepsy center, including patients with and without suspected lesions on standard 3T MRI. Clinical information and 3T images informed the interpretation of 7T images. Detection of a new lesion on 7T or better characterization of a suspected lesion was considered to add value to the presurgical workup. RESULTS: Interpretable 7T MRI was acquired in 19 patients. 7T MRI identified a lesion relevant to the seizures in three of eight patients (38%) without a lesion on 3T MRI; no lesion in 7/11 patients (64%) with at least one suspected lesion on 3T MRI, contributing to the final classification of all seven as nonlesional; and confirmed and better characterized the lesion suspected at 3T MR in the remaining 4/11 patients. CONCLUSIONS: 7T MRI detected new lesions in over a third of 3T MRI nonlesional patients, confirmed and better characterized a 3T suspected lesion in one third of patients, and helped exclude a 3T suspected lesion in the remainder. Our initial experience suggests that 7T MRI adds value to surgical planning by improving detection and characterization of suspected brain lesions in drug-resistant focal epilepsy patients.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Clinical Decision-Making , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/surgery , Humans , Magnetic Resonance Imaging/methods , Uncertainty
14.
Epileptic Disord ; 23(5): 787-792, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34519650

ABSTRACT

Achieving sustained seizure freedom following epilepsy surgery remains a challenge in some patients. Lesional temporal lobe epilepsy (TLE), for example, in patients with mesial temporal sclerosis or other MRI abnormalities, carries a good prognosis for seizure freedom compared to significantly lower chances of seizure freedom in patients with non-lesional epilepsy. However, even in some lesional TLE cases, persistent post-operative seizures suggest seizure onset from a brain region that is clinically and electrographically silent but manifests only after propagation to the temporal lobe. A notable example of such a brain region is the parietal lobe, which has extensive connectivity to various brain regions. While certain seizure semiologies, for example, sensory seizures, suggest parietal lobe onset, some medial parietal seizures may be semiologically indistinguishable from temporal lobe seizures. Here, we report a patient with focal impaired awareness seizures that manifested semiologically and electrographically as left TLE but proved to originate from the contralateral medial parietal lobe. We discuss putative seizure propagation pathways.


Subject(s)
Epilepsy, Temporal Lobe , Seizures , Electroencephalography , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/surgery , Humans , Magnetic Resonance Imaging , Seizures/etiology , Temporal Lobe
15.
Article in English | MEDLINE | ID: mdl-33402525

ABSTRACT

OBJECTIVE: To determine whether studying patients with strictly unilateral relapsing primary angiitis of the CNS (UR-PACNS) can support hemispheric differences in immune response mechanisms, we reviewed characteristics of a group of such patients. METHODS: We surveiled our institution for patients with UR-PACNS, after characterizing one such case. We defined UR-PACNS as PACNS with clinical and radiographic relapses strictly recurring in 1 brain hemisphere, with or without hemiatrophy. PACNS must have been biopsy proven. Three total cases were identified at our institution. A literature search for similar reports yielded 4 additional cases. The combined 7 cases were reviewed for demographic, clinical, imaging, and pathologic trends. RESULTS: The median age at time of clinical onset among the 7 cases was 26 years (range 10-49 years); 5 were male (71%). All 7 patients presented with seizures. The mean follow-up duration was 7.5 years (4-14.1 years). The annualized relapse rate ranged between 0.2 and 1. UR-PACNS involved the left cerebral hemisphere in 5 of the 7 patients. There was no consistent relationship between the patient's dominant hand and the diseased side. When performed (5 cases), conventional angiogram was nondiagnostic. CSF examination showed nucleated cells and protein levels in normal range in 3 cases and ranged from 6 to 11 cells/µL and 49 to 110 mg/dL in 4 cases, respectively. All cases were diagnosed with lesional biopsy, showing lymphocytic type of vasculitis of the small- and medium-sized vessels. Patients treated with steroids alone showed progression. Induction therapy with cyclophosphamide or rituximab followed by a steroid sparing agent resulted in the most consistent disease remission. CONCLUSIONS: Combining our 3 cases with others reported in the literature allows better clinical understanding about this rare and extremely puzzling disease entity. We hypothesize that a functional difference in immune responses, caused by such discrepancies as basal levels of cytokines, asymmetric distribution of microglia, and differences in modulation of the systemic immune functions, rather than a structural antigenic difference, between the right and left brain may explain this phenomenon, but this is speculative.


Subject(s)
Cerebrum/diagnostic imaging , Cerebrum/immunology , Immunity/immunology , Vasculitis, Central Nervous System/diagnostic imaging , Vasculitis, Central Nervous System/immunology , Adult , Child , Female , Follow-Up Studies , Humans , Male , Middle Aged , Recurrence , Young Adult
16.
J Psychiatry Psychiatr Disord ; 4(5): 307-314, 2020.
Article in English | MEDLINE | ID: mdl-35265793

ABSTRACT

Introduction: Novel expensive diagnostic tests are rapidly emerging. However, the answer to the most complex clinical presentations is often inferred from a systematic approach to the differential diagnosis. This is especially the case in neuropsychiatric disorders that present with a mix of neurologic and psychiatric symptoms. This case report fills a gap in the literature by providing a systematic differential diagnosis of such neuropsychiatric presentations associated with non-focal brain imaging. Case Presentation: A 33-year-old African-American man presented with confusion, weakness, and tremors. He initially noted memory problems and over the following six months progressively became confused, developed speech difficulties and left sided weakness and tremors. On exam, he was predominantly abulic but with intermittent and extreme mood lability. He lacked insight and his attention was poor. He had mild facial weakness and spastic hemiparesis with action tremors on the left side. Magnetic Resonance Imaging of the brain demonstrated non-specific diffuse parenchymal volume loss. His serum and cerebrospinal fluid studies were positive for Rapid Plasma Reagin and Veneral Disease Research Laboratory tests, respectively, suggesting a diagnosis of paretic neurosyphilis. Conclusion: This is a case of a young man with neurosyphilis who presented with progressive subacute cognitive decline, associated with focal neurological signs but no focal lesions on brain imaging. Neurosyphilis is often misdiagnosed on medicine, psychiatry, and neurology inpatient units. In this report, we present an approach to conceptualize similar cases and provide a differential diagnosis that will help reach an accurate diagnosis more efficiently. Further, it raises awareness regarding neurosyphilis, a devastating but easily treatable condition.

17.
J Digit Imaging ; 33(2): 324-333, 2020 04.
Article in English | MEDLINE | ID: mdl-31512018

ABSTRACT

Surgical evaluation of medically refractory epilepsy frequently necessitates implantation of multiple intracranial electrodes for the identification of the seizure focus. Knowledge of the individual brain's surface anatomy and deep structures is crucial for planning the electrode implantation. We present a novel method of 3D printing a brain that allows for the simulation of placement of all types of intracranial electrodes. We used a DICOM dataset of a T1-weighted 3D-FSPGR brain MRI from one subject. The segmentation tools of Materialise Mimics 21.0 were used to remove the osseous anatomy from brain parenchyma. Materialise 3-matic 13.0 was then utilized in order to transform the cortex of the segmented brain parenchyma into a mesh-like surface. Using 3-matic tools, the model was modified to incorporate deep brain structures and create an opening in the medial aspect. The final model was then 3D printed as a cerebral hemisphere with nylon material using selective laser sintering technology. The final model was light and durable and reflected accurate details of the surface anatomy and some deep structures. Additionally, standard surgical depth electrodes could be passed through the model to reach deep structures without damaging the model. This novel 3D-printed brain model provides a unique combination of visualizing both the surface anatomy and deep structures through the mesh-like surface while allowing repeated needle insertions. This relatively low-cost technique can be implemented for interdisciplinary preprocedural planning in patients requiring intracranial EEG monitoring and for any intervention that requires needle insertion into a solid organ with unique anatomy and internal targets.


Subject(s)
Brain , Electrocorticography , Brain/diagnostic imaging , Electrodes, Implanted , Electroencephalography , Humans , Printing, Three-Dimensional , Retrospective Studies , Surgical Mesh
18.
Clin Neurol Neurosurg ; 189: 105640, 2020 02.
Article in English | MEDLINE | ID: mdl-31865060

ABSTRACT

Stereotactic implantation of depth electrodes for surgical evaluation of drug-resistant epilepsy is the technique of choice in many centers across the world. Historically, the choice of depth versus subdural electrodes has been largely dependent on the training of epileptologists and epilepsy surgeons in light of their comfort level with implantation procedures and interpretation of clinical data. In this review, we provide a historical perspective and clinical update regarding recommendations for the use of stereoelectroencephalography (SEEG) with respect to recent outcomes data, technological advances in multimodal imaging, and signal analysis.


Subject(s)
Electrocorticography/methods , Epilepsy/physiopathology , Epilepsy/surgery , Neurosurgical Procedures/methods , Stereotaxic Techniques , Anterior Temporal Lobectomy , Brain Mapping , Drug Resistant Epilepsy/physiopathology , Drug Resistant Epilepsy/surgery , Electrodes, Implanted , Epilepsies, Partial/physiopathology , Epilepsies, Partial/surgery , Epilepsy, Temporal Lobe/physiopathology , Epilepsy, Temporal Lobe/surgery , Humans , Imaging, Three-Dimensional , Magnetic Resonance Imaging , Robotic Surgical Procedures , Subdural Space , Tomography, X-Ray Computed
19.
Hippocampus ; 29(1): 46-59, 2019 01.
Article in English | MEDLINE | ID: mdl-30411437

ABSTRACT

The role of the hippocampus in recollection and familiarity remains debated. Using functional magnetic resonance imaging (fMRI), we explored whether hippocampal activity is modulated by increasing recollection confidence, increasing amount of recalled information, or both. We also investigated whether any hippocampal differences between recollection and familiarity relate to processing differences or amount of information in memory. Across two fMRI tasks, we separately compared brain responses to levels of confidence for cued word recall and word familiarity, respectively. Contrary to previous beliefs, increasing confidence/accuracy of cued recall of studied words did not increase hippocampal activity, when unconfounded by amount recollected. In contrast, additional recollection (i.e., recollecting more information than the word alone) increased hippocampal activity, although its accuracy matched that of word recall alone. Unlike cued word recall, increasing word familiarity accuracy did increase hippocampal activity linearly, although at an uncorrected level. This finding occurred although cued word recall and familiarity memory seemed matched with respect to information in memory. The detailed characteristics of these effects do not prove that word familiarity is exceptional in having hippocampal neural correlates. They suggest instead that participants fail to identify some aspects of recollection, misreporting it as familiarity, a problem with word-like items that have strong and recallable semantic associates.


Subject(s)
Hippocampus/diagnostic imaging , Hippocampus/physiology , Mental Recall/physiology , Recognition, Psychology/physiology , Adult , Female , Humans , Magnetic Resonance Imaging/methods , Male , Photic Stimulation/methods , Young Adult
20.
Muscle Nerve ; 58(2): 261-269, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29466830

ABSTRACT

INTRODUCTION: Amyotrophic lateral sclerosis (ALS) is a debilitating neurologic disorder with poor survival rates and no clear biomarkers for disease diagnosis and prognosis. METHODS: We compared serum microRNA (miRNA) expression from patients with ALS with healthy controls and patients with multiple sclerosis and Alzheimer disease. We also correlated miRNA expression in cross-sectional and longitudinal cohorts of ALS patients with clinical parameters. RESULTS: We identified 7 miRNAs (miR-192-5p, miR-192-3p, miR-1, miR-133a-3p, miR-133b, miR-144-5p, miR-19a-3p) that were upregulated and 6 miRNAs (miR-320c, miR-320a, let-7d-3p, miR-425-5p, miR-320b, miR-139-5p) that were downregulated in patients with ALS compared with healthy controls, patients with Alzheimer disease, and patients with multiple sclerosis. Changes in 4 miRNAs (miR-136-3p, miR-30b-5p, miR-331-3p, miR-496) correlated positively and change in 1 miRNA (miR-2110) correlated negatively with changes in clinical parameters in longitudinal analysis. DISCUSSION: Our findings identified serum miRNAs that can serve as biomarkers for ALS diagnosis and progression. Muscle Nerve 58: 261-269, 2018.


Subject(s)
Amyotrophic Lateral Sclerosis/blood , Amyotrophic Lateral Sclerosis/physiopathology , MicroRNAs/blood , Adult , Alzheimer Disease/blood , Alzheimer Disease/physiopathology , Biomarkers/blood , Cohort Studies , Cross-Sectional Studies , Disease Progression , Female , Gene Expression Regulation , Humans , Longitudinal Studies , Male , Middle Aged , Multiple Sclerosis/blood , Multiple Sclerosis/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...