Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Autops Case Rep ; 14: e2024489, 2024.
Article in English | MEDLINE | ID: mdl-38803485

ABSTRACT

Pulmonary arteriovenous malformations (PAVMs) are abnormal vascular connections between pulmonary arteries and veins, often associated with hereditary hemorrhagic telangiectasia (HHT). Most PAVMs are asymptomatic, but life-threatening complications like pulmonary hemorrhage, brain abscesses, and paradoxical emboli can emerge, so prompt diagnosis and treatment are crucial. We report a case of sudden pediatric death in a two-year-old female with no past medical history. Initial vomiting and fast deterioration resulted in a sudden cardiac arrest. The postmortem examination found histological evidence of consistent, extensive lung damage. The absence of the characteristic symptoms made for some challenges when it came to diagnosis, showing precisely that in early life, you could well have many difficulties in catching PAVMs. This case highlights the need to take PAVMs into account as a potential cause of sudden death, particularly when there are no conspicuous symptoms. Awareness among forensic pathologists and consideration of genetic analysis for HHT in such cases is crucial for accurate diagnosis and management.

2.
Brain Res Bull ; 209: 110917, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38428507

ABSTRACT

PURPOSE: Fentanyl, a fully synthetic opioid, is widely used for severe pain management and has a huge abuse potential for its psychostimulant effects. Unlike other opioids, the neurotoxic effects of chronic fentanyl administration are still unclear. In particular, little is known about its effect on the cerebral cortex. The current study aims to test the chronic toxicity of fentanyl in the mice model. METHODS: Adult male Balb/c mice were chronically treated with low (0.05 mg/kg, i.p) and high (0.1 mg/kg, i.p) doses of fentanyl for 5 consecutive weeks, and various neurotoxic parameters, including apoptosis, oxidative stress, and neuroinflammatory response were assessed in the cortex. Potential histological as well as neurochemical changes were also evaluated. RESULTS: The results of this study show that chronic fentanyl administration induced intense levels of apoptosis, oxidative stress, and neuroinflammation in the cerebral cortex. These findings were found to be correlated with histopathological characteristics of neural degeneration and white matter injury. Moreover, fentanyl administration was found to reduce the expression of both NMDA receptor subunits and dopamine receptors and elevate the level of epidermal growth factor (EGF). CONCLUSION: Fentanyl administration induced neurotoxic effects in the mouse cerebral cortex that could be primarily mediated by the evoked oxidative-inflammatory response. The altered expression of NMDA receptors, dopamine receptors, and EGF suggests the pernicious effects of fentanyl addiction that may end in the development of toxic psychosis.


Subject(s)
Epidermal Growth Factor , Fentanyl , Mice , Male , Animals , Fentanyl/pharmacology , Epidermal Growth Factor/therapeutic use , Analgesics, Opioid/pharmacology , Analgesics, Opioid/therapeutic use , Pain/drug therapy , Cerebral Cortex
3.
Mol Biol Rep ; 50(12): 9887-9895, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37864661

ABSTRACT

BACKGROUND: Tramadol is one of the most commonly abused substances in the Middle East. Furthermore, smoking is extremely common among the population. METHODS: An experimental study was performed on Sprague-Dawley rats to explore the effects of both nicotine and tramadol on the liver and testes. The tramadol was administered at 10 and 20 mg/kg, respectively, while the nicotine was administered at 125 mg/kg. Histological examination and androgen receptor ELISA assay showed mild effects on the liver and proofed safety on the testis. Western blot analysis of BIP (immunoglobulin heavy-chain binding protein) and CHOP (CCAAT-enhancer-binding protein homologous protein) revealed that fewer problems were induced by adding nicotine to tramadol. Autophagy marker LCIII and apoptosis marker caspase-8 showed similar effects to CHOP and BIP on liver samples. The real-time PCR of BIP expression showed similar but not identical results. CONCLUSIONS: The results showed mild endoplasmic reticulum stress, autophagy, and apoptosis in the liver samples. Histological examination revealed stable spermatogenesis with average androgen receptor blood levels in the different groups.


Subject(s)
Testis , Tramadol , Rats , Male , Animals , Nicotine/pharmacology , Tramadol/metabolism , Tramadol/pharmacology , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Rats, Sprague-Dawley , Liver/metabolism , Apoptosis , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress
4.
Biomed Res Int ; 2023: 1953356, 2023.
Article in English | MEDLINE | ID: mdl-37593523

ABSTRACT

Tramadol abuse is a common problem in the Middle East in conjunction with smoking. The current study applied immunohistochemistry, western blot, real-time PCR, and ELISA to test the combination toxicity. Low toxic doses of tramadol induced animal brain cortex inflammation and hippocampus injury. Adding nicotine reverted hippocampus pathological changes without triggering marked brain injury. The expression of CHOP protein with real-time PCR showed mild endoplasmic reticulum stress (ER) in rat's brain. Histological, immunohistochemical, and western blotting analysis of CHOP (CCAAT-enhancer-binding protein homologous protein) and BIP (immunoglobulin heavy chain-binding protein) chaperones demonstrated endoplasmic reticulum stress in the brains of animals. Furthermore, the levels of apoptosis and autophagy markers demonstrated a mild reaction. The blood level of serotonin was high in all study groups, with a marked increase in the combined one. The high serotonin levels in the blood can be critical and associated with a high risk of serious withdrawal and pathological consequences. Serotonin receptor blockers such as olanzapine may increase systemic serotonin levels and need further investigation to utterly pinpoint their roles in managing mood disorders. In conclusion, the combination of tramadol and nicotine is less harmful than expected. However, serious withdrawal effects can occur as a result of high systemic serotonin effects.


Subject(s)
Encephalitis , Tramadol , Animals , Rats , Nicotine , Serotonin , Smoking , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress
5.
Clin. transl. oncol. (Print) ; 25(8): 2279-2296, aug. 2023. ilus
Article in English | IBECS | ID: ibc-222408

ABSTRACT

Chimeric antigen receptor T cells therapy (CAR-T therapy) is a class of ACT therapy. Chimeric antigen receptor (CAR) is an engineered synthetic receptor of CAR-T, which give T cells the ability to recognize tumor antigens in a human leukocyte antigen-independent (HLA-independent) manner and enables them to recognize more extensive target antigens than natural T cell surface receptor (TCR), resulting in tumor destruction. CAR-T is composed of an extracellular single-chain variable fragment (scFv) of antibody, which serves as the targeting moiety, hinge region, transmembrane spacer, and intracellular signaling domain(s). CAR-T has been developing in many generations, which differ according to costimulatory domains. CAR-T therapy has several limitations that reduce its wide availability in immunotherapy which we can summarize in antigen escape that shows either partial or complete loss of target antigen expression, so multiplexing CAR-T cells are promoted to enhance targeting of tumor profiles. In addition, the large diversity in the tumor microenvironment also plays a major role in limiting this kind of treatment. Therefore, engineered CAR-T cells can evoke immunostimulatory signals that rebalance the tumor microenvironment. Using CAR-T therapy in treating the solid tumor is mainly restricted by the difficulty of CAR-T cells infiltrating the tumor site, so local administration was developed to improve the quality of treatment. The most severe toxicity after CAR-T therapy is on-target/on-tumor toxicity, such as cytokine release syndrome (CRS). Another type of toxicity is on-target/off-tumor toxicity which originates from the binding of CAR-T cells to target antigen that has shared expression on normal cells leading to damage in healthy cells and organs. Toxicity management should become a focus of implementation to permit management beyond specialized centers (AU)


Subject(s)
Humans , Receptors, Antigen, T-Cell/immunology , Immunotherapy, Adoptive/methods , Neoplasms/therapy , T-Lymphocytes/transplantation , Recombinant Fusion Proteins/therapeutic use , Antigens, Neoplasm/immunology , T-Lymphocytes/immunology , Tumor Microenvironment
6.
Clin Transl Oncol ; 25(8): 2279-2296, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36853399

ABSTRACT

Chimeric antigen receptor T cells therapy (CAR-T therapy) is a class of ACT therapy. Chimeric antigen receptor (CAR) is an engineered synthetic receptor of CAR-T, which give T cells the ability to recognize tumor antigens in a human leukocyte antigen-independent (HLA-independent) manner and enables them to recognize more extensive target antigens than natural T cell surface receptor (TCR), resulting in tumor destruction. CAR-T is composed of an extracellular single-chain variable fragment (scFv) of antibody, which serves as the targeting moiety, hinge region, transmembrane spacer, and intracellular signaling domain(s). CAR-T has been developing in many generations, which differ according to costimulatory domains. CAR-T therapy has several limitations that reduce its wide availability in immunotherapy which we can summarize in antigen escape that shows either partial or complete loss of target antigen expression, so multiplexing CAR-T cells are promoted to enhance targeting of tumor profiles. In addition, the large diversity in the tumor microenvironment also plays a major role in limiting this kind of treatment. Therefore, engineered CAR-T cells can evoke immunostimulatory signals that rebalance the tumor microenvironment. Using CAR-T therapy in treating the solid tumor is mainly restricted by the difficulty of CAR-T cells infiltrating the tumor site, so local administration was developed to improve the quality of treatment. The most severe toxicity after CAR-T therapy is on-target/on-tumor toxicity, such as cytokine release syndrome (CRS). Another type of toxicity is on-target/off-tumor toxicity which originates from the binding of CAR-T cells to target antigen that has shared expression on normal cells leading to damage in healthy cells and organs. Toxicity management should become a focus of implementation to permit management beyond specialized centers.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes/metabolism , Tumor Microenvironment
7.
Metab Brain Dis ; 38(3): 795-804, 2023 03.
Article in English | MEDLINE | ID: mdl-36656396

ABSTRACT

Schizophrenia (SZ) is a devastating neurodevelopmental disease with an accelerated ageing feature. The criteria of metabolic disease firmly fit with those of schizophrenia. Disturbances in energy and mitochondria are at the core of complex pathology. Genetic and environmental interaction creates changes in redox, inflammation, and apoptosis. All the factors behind schizophrenia interact in a cycle where it is difficult to discriminate between the cause and the effect. New technology and advances in the multi-dispensary fields could break this cycle in the future.


Subject(s)
Metabolic Diseases , Schizophrenia , Humans , Schizophrenia/genetics , Schizophrenia/metabolism , Oxidation-Reduction , Aging , Mitochondria/metabolism , Metabolic Diseases/genetics , Metabolic Diseases/metabolism
8.
World J Stem Cells ; 15(12): 1093-1103, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38179215

ABSTRACT

BACKGROUND: Mesenchymal stem cells (MSCs) are a type of stem cells that possess relevant regenerative abilities and can be used to treat many chronic diseases. Diabetes mellitus (DM) is a frequently diagnosed chronic disease characterized by hyperglycemia which initiates many multisystem complications in the long-run. DM patients can benefit from MSCs transplantation to curb down the pathological consequences associated with hyperglycemia persistence and restore the function of damaged tissues. MSCs therapeutic outcomes are found to last for short period of time and ultimately these regenerative cells are eradicated and died in DM disease model. AIM: To investigate the impact of high glucose or hyperglycemia on the cellular and molecular characteristics of MSCs. METHODS: Human adipose tissue-derived MSCs (hAD-MSCs) were seeded in low (5.6 mmol/L of glucose) and high glucose (25 mmol/L of glucose) for 7 d. Cytotoxicity, viability, mitochondrial dynamics, and apoptosis were deplored using specific kits. Western blotting was performed to measure the protein expression of phosphatidylinositol 3-kinase (PI3K), TSC1, and mammalian target of rapamycin (mTOR) in these cells. RESULTS: hAD-MSCs cultured in high glucose for 7 d demonstrated marked decrease in their viability, as shown by a significant increase in lactate dehydrogenase (P < 0.01) and a significant decrease in Trypan blue (P < 0.05) in these cells compared to low glucose control. Mitochondrial membrane potential, indicated by tetramethylrhodamine ethyl ester (TMRE) fluorescence intensity, and nicotinamide adenine dinucleotide (NAD+)/NADH ratio were significantly dropped (P < 0.05 for TMRE and P < 0.01 for NAD+/NADH) in high glucose exposed hAD-MSCs, indicating disturbed mitochondrial function. PI3K protein expression significantly decreased in high glucose culture MSCs (P < 0.05 compared to low glucose) and it was coupled with significant upregulation in TSC1 (P < 0.05) and downregulation in mTOR protein expression (P < 0.05). Mitochondrial complexes I, IV, and V were downregulated profoundly in high glucose (P < 0.05 compared to low glucose). Apoptosis was induced as a result of mitochondrial impairment and explained the poor survival of MSCs in high glucose. CONCLUSION: High glucose impaired the mitochondrial dynamics and regulatory proteins in hAD-MSCs ensuing their poor survival and high apoptosis rate in hyperglycemic microenvironment.

9.
Asian Pac J Cancer Prev ; 23(2): 641-650, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35225477

ABSTRACT

BACKGROUND: Epstein-Barr virus (EBV) has been implicated in the development of breast cancer (BC) since 1995. It is classified into A/B genotypes, C/D subtypes, and F/f variants according to variations in its genome. AIM: To determine the distribution difference of EBV types between BC patients and healthy controls in Egypt and to detect the association between different EBV types and BC characteristics. METHODS: Three hundred and sixty-two participants (142 BC patients and 220 controls) were enrolled in this study. All participants were screened for EBV infection by determination of viral-capsid-IgG antibodies in their sera. EBNA-1 gene was detected by PCR in tumor biopsies of seropositive patients and in peripheral blood mononuclear cells of controls. A/B genotyping of EBV was performed by nested-PCR targeting the EBNA-2 gene. C/D subtypes and F/f variants were identified by Restriction fragment length polymorphism at BamHI-I W1/I1 and BamHI-F regions of EBV genome, respectively. RESULTS: Among 362 participants, 300(82.9%) were EBV-seropositive, including 120/142(84.5%) of the BC patients and 180/220(81.8 %) of the controls. EBNA-1 gene was positive in 54(45%) of seropositive BC patients and in 38(21.1%) of seropositive controls. There was a significant association of EBNA-1 gene with breast cancer (OR=3.05, 95%CI=1.84-5.07). Moreover, EBNA-1 gene positivity was significantly associated with the more aggressive tumors. Genotype-A and prototype-F were predominant among patients (90.4%, 100%, respectively) as well as among controls (91.7%, 100%, respectively) with no statistical significant association with BC risk.  However, subtype-D was significantly more frequent in patients (95.6%) than in controls (64.7%) and was significantly associated with a higher BC risk as compared to subtype-C (OR=11.7, 95%CI=2.4-57.08). Subtype-D was significantly associated with higher grades tumors (100% among grade III),  with progesteron receptor-negative tumors and with HER2-positive tumors (100% for each). The combined genotypes that significantly associated with BC risk were ADF (OR=4.9) and BDF (OR=5.5). CONCLUSIONS: Subtype-D of EBV could be the only EBV type implicated in BC development among Egyptian females and associated more with poor prognosis.


Subject(s)
Breast Neoplasms/virology , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Nuclear Antigens/genetics , Herpesvirus 4, Human/genetics , Viral Proteins/genetics , Adult , Aged , Case-Control Studies , Egypt , Epstein-Barr Virus Infections/complications , Female , Genotype , Humans , Leukocytes, Mononuclear , Middle Aged , Polymerase Chain Reaction , Polymorphism, Restriction Fragment Length/genetics , Prognosis
10.
Anal Cell Pathol (Amst) ; 2022: 9993496, 2022.
Article in English | MEDLINE | ID: mdl-35083113

ABSTRACT

Diffuse large B cell lymphoma is the most common type of lymphoma in Egypt with an unfavorable prognosis. The tumor microenvironment is rich in immune response either T cells or macrophages. The current study is aimed at testing CD4, CD8, CD68, and MMP9 immunohistochemistry of DLBCL activities with the prognosis of the tumor. The results showed no positive relation between T cell and macrophage reaction to the tumor prognosis suggesting that this reaction is part of the tumor process and not a defense mechanism from the surrounding stroma.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Tumor Microenvironment , Humans , Lymphoma, Large B-Cell, Diffuse/metabolism , Macrophages/pathology , Prognosis , T-Lymphocytes
11.
Ultrastruct Pathol ; 45(1): 28-36, 2021 Jan 02.
Article in English | MEDLINE | ID: mdl-33377812

ABSTRACT

We developed a model of steroid-induced reactivation of chronic murine toxoplasmosis to mirror similar effects of steroids or other immunosuppressants in infected humans. Immunological, histopathological, and ultrastructural parameters were reported. Prior to steroid administration, mice were infected with 10 cysts of the Me49 strain of Toxoplasma gondii. Mice were treated with dexamethasone (DXM, 2.5 mg/kg/day in drinking water), alone or combined with Solu-Cortef (SOLU, 50 mg/kg by subcutaneous injection 3 times a week) for 7 weeks or left untreated as control. Histopathological changes and ultrastructural effects of steroids on the course of chronic toxoplasmosis were recorded. By electron microscopy, the brains of infected combined treated mice showed an increase in number of tachyzoites and bradyzoites, degeneration, and necrosis of neural cells and hydropic degeneration besides the observed rupture of toxoplasma cysts releasing free tachyzoites in brain tissue. DXM+SOLU-combined treatment also significantly increased mortality, mean brain cyst count as compared to infected untreated mice (P = .01 and). Moreover, 3/12 (25%) treated animals developed clinical signs of toxoplasmic encephalitis. This simple model of drug-induced reactivation of chronic toxoplasmosis permits investigation of host-parasite interaction and may be used for the evaluation of chemotherapeutics in immunocompromised infected patients.


Subject(s)
Toxoplasma , Toxoplasmosis, Animal , Toxoplasmosis, Cerebral , Animals , Brain , Humans , Mice , Steroids
12.
Front Mol Neurosci ; 13: 84, 2020.
Article in English | MEDLINE | ID: mdl-32625061

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disease that affects substantia nigra dopamine neurons. Many studies have documented the role of oxidative stress and angiogenesis in the pathogenesis of PD. Metformin (MTF) is an antidiabetic medication and AMP-activated protein kinase (AMPK) regulator that has shown antioxidant and antiangiogenic properties in many disorders. The aim of this study is to investigate the neuroprotective effect of MTF in a mouse model of rotenone-prompted PD with a highlight on its influence on the AMPK/forkhead box transcription factor O3 (FOXO3) pathway and striatal angiogenesis. In the running study, PD was induced in mice using repeated doses of rotenone and concomitantly treated with MTF 100 or 200 mg/kg/day for 18 days. Rotarod and pole tests were used to examine the animals' motor functionality. After that, animals were sacrificed, and brains were isolated and processed for immunohistochemical investigations or biochemical analyses. Oxidant stress and angiogenic markers were measured, including reduced glutathione, malondialdehyde, the nuclear factor erythroid 2-related factor 2 (Nrf2), hemoxygenase-1, thioredoxin, AMPK, FOXO3, and vascular endothelial growth factor (VEGF). Results indicated that MTF improved animals' motor function, improved striatal glutathione, Nrf2, hemoxygenase-1, and thioredoxin. Furthermore, MTF upregulated AMPK-FOXO3 proteins and reduced VEGF and cleaved caspase 3. MTF also increased the number of tyrosine hydroxylase (TH)-stained neurons in the substantia nigra neurons and in striatal neuronal terminals. This study is the first to highlight that the neuroprotective role of MTF is mediated through activation of AMPK-FOXO3 signaling and inhibition of the proangiogenic factor, VEGF. Further studies are warranted to confirm this mechanism in other models of PD and neurodegenerative diseases.

13.
Curr Drug Saf ; 14(3): 199-208, 2019.
Article in English | MEDLINE | ID: mdl-31195950

ABSTRACT

INTRODUCTION: Antibiotic abuse is a common phenomenon in Egypt as medications are prescribed without supervision. It is suggested that the excess use of antibiotics modifies the gut microbiota and plays a role in the development of neurological and psychiatric disorders. OBJECTIVE: The aim of the present study was to use bulb-c mice as models for curam (amoxicillin /clavulanic acid) abuse compared to the locally acting neomycin model, then restoring the probiotic balance to look at the possible effects on the animal brains. METHODS: The results showed early excitable brains demonstrated by S100b immunohistochemistry in both cortexes and hippocampuses of neomycin-treated mice. Staining with PAS stain showed no suggested neurodegenerative changes. Treatment with probiotics improved the S100b immunohistochemistry profile of the curam group partially but failed to overcome the neuroinflammatory reaction detected by hematoxylin and eosin stain. Curam was possibly blamed for the systemic effects. RESULTS: The neurobehavioral tests showed delayed impairment in the open field test for the curam group and impaired new object recognition for the neomycin group. These tests were applied by video recording. The neurobehavioral decline developed 14 days after the end of the 3-week antibiotic course. Unfortunately, curam abuse induced animal fatalities. CONCLUSION: Antibiotic abuse has a neurotoxic effect that works by both local and more prominent systemic mechanisms. It can be said that antibiotic abuse is a cofactor behind the rise of neuropsychiatric diseases in Egypt.


Subject(s)
Amoxicillin/toxicity , Anti-Bacterial Agents/toxicity , Behavior, Animal/drug effects , Clavulanic Acid/toxicity , Nervous System Diseases/chemically induced , Animals , Gastrointestinal Microbiome , Male , Mice , Mice, Inbred BALB C , Nervous System Diseases/metabolism , Nervous System Diseases/physiopathology , S100 Calcium Binding Protein beta Subunit/metabolism
14.
Exp Parasitol ; 195: 44-53, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30339984

ABSTRACT

Toxoplasmosis is a worldwide parasitic disease responsible for serious health problems to human. The currently available drugs used for toxoplasmosis treatment showed a limited efficacy and cause serious host toxicity. The in vitro screening for toxoplasmicidal activity of Araucaria heterophylla resin (AHR) extract and its major component 13-epi-cupressic acid (CUP) showed that both AHR (EC50 = 3.90) and CUP (EC50 = 3.69) have high toxoplasmicidal activity in comparison with standard cotrimoxazole (EC50 = 4.28). The antiprotozoal effects of AHR and CUP were investigated against acute and chronic toxoplasmosis using mice models. Two groups of Swiss albino mice were infected by RH Toxoplasma strain intraperitoneally and by Me49 strain orally. Both groups were treated with AHR and CUP in different doses. Their effects were evaluated by survival rate, peritoneal, spleen and liver parasite burdens, brain cyst burden, NO serum level and histopathological lesions. The ultrastructural changes of tachyzoites of acutely infected mice were studied using scanning electron microscopy (SEM). There is an evidence of toxoplasmicidal activity of AHR and CUP in acute and chronic experimental toxoplasmosis. In the acute model, mice treated with AHR and CUP showed prolonged survival rates, a significant decrease in the parasite density in peritoneal lavage and pathological insult in both liver and spleen compared with that of untreated ones. SEM results denote evident morphological alterations of treated tachyzoites. In chronic experimental toxoplasmosis, AHR and CUP treated groups could significantly reduce brain cyst burden by 96.05% and 98.02% respectively. This study indicates that AHR and CUP showed potent toxoplasmicidal activities experimentally and could be used as a potential natural nontoxic agent for treatment of toxoplasmosis.


Subject(s)
Plant Extracts/therapeutic use , Resins, Plant/chemistry , Toxoplasmosis, Animal/drug therapy , Tracheophyta/chemistry , Acute Disease , Animals , Ascitic Fluid/parasitology , Brain/parasitology , Brain/pathology , Chronic Disease , Disease Models, Animal , Diterpenes/chemistry , Diterpenes/pharmacology , Diterpenes/toxicity , Female , Liver/parasitology , Liver/pathology , Mice , Microscopy, Electron, Scanning , Nitric Oxide/blood , Peritoneal Lavage , Plant Extracts/pharmacology , Plant Extracts/toxicity , Plant Stems/chemistry , Random Allocation , Resins, Plant/pharmacology , Resins, Plant/toxicity , Spectrophotometry, Infrared , Spleen/parasitology , Spleen/pathology , Survival Rate , Toxoplasma/drug effects , Toxoplasma/growth & development , Toxoplasma/ultrastructure , Toxoplasmosis, Animal/mortality
SELECTION OF CITATIONS
SEARCH DETAIL
...