Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Nanoscale Adv ; 6(9): 2431-2446, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38694458

ABSTRACT

A novel, efficient, and recyclable mesoporous Fe3O4@SiO2@SBA-3@CPTMS@Arg-Cu nanocatalyst was synthesized by grafting l-arginine (with the ability to coordinate with Cu) onto a mixed phase of a magnetic mesoporous SBA-3 support. The catalyst was characterized using several techniques, including Fourier-transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), X-ray diffraction (XRD) analysis, N2 adsorption-desorption analysis, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray (EDX) analysis, and atomic absorption spectroscopy (AAS). The resulting solid material possessed a surface area of 145 m2 g-1 and a total pore volume of 34 cm3 g-1. The prepared mesoporous material was studied as a practical, recyclable, and chemoselective catalyst in some organic functional group transformations such as the conversion of nitriles to amides and synthesis of 5-substituted 1H-tetrazoles. This novel magnetic nanocatalyst proved to be effective and provided the products in high to excellent yields under green solvent conditions. Meanwhile, the as-prepared Fe3O4@SiO2@SBA-3@CPTMS@Arg-Cu demonstrated excellent reusability and stability under reaction conditions, and its catalytic activity shown only a slight decrease after seven consecutive runs. Therefore, the as-synthesized magnetic Fe3O4@SiO2@SBA-3@CPTMS@Arg-Cu has broad prospects for practical applications, and offers various benefits such as simplicity, nontoxicity, low cost, simple work-up, and an environmentally benign nature.

2.
RSC Adv ; 14(23): 16269-16277, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38769959

ABSTRACT

In this study, boehmite nanoparticles (B-NPs) were prepared by a simple process and then their surface was modified by (3-aminopropyl)triethoxysilane (3-APTES). The modified B-NPs (3-APTES@B-NPs) were functionalized by 2-benzoylpyridine Schiff-base ligand toward the immobilization of the Schiff-base 2-benzoylpyridine ligand on the 3-APTES@B-NPs's surface (2BP-Schiff-base@B-NPs). Finally, copper ions were coordinated with the supported Schiff-base ligand on B-NPs toward the formation of the final catalyst (Cu-2BP-Schiff-base@B-NPs). The prepared Cu-2BP-Schiff-base@B-NPs were characterized using FT-IR spectroscopy, BET analysis, XRD, SEM, AAS, TGA, EDX and elemental mapping. Further, Cu-2BP-Schiff-base@B-NPs were applied as a homoselective and recyclable catalyst for the synthesis of a diverse range of 5-substituted tetrazoles in PEG-400 as a green solvent. The main benefits of this protocol are high homoselectivity attributes, short reaction times, high product yields and TOF values, and further addition to the catalyst ability to be recycled at least four times without significantly losing catalytic efficiency.

3.
Sci Rep ; 14(1): 7449, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38548734

ABSTRACT

Herein, we report the synthesis of ZnFe2O4@SiO2@L-lysine@SO3H as a green, novel magnetic nanocatalyst, containing the sulfuric acid catalytic sites on the surface of zinc ferrite as the catalytic support. The physical and chemical properties of raw and modified samples (ZnFe2O4@SiO2@L-lysine@SO3H) were characterized by TGA, EDX, PXRD, Map, and FTIR analyses. The prepared nanocatalyst has excellent catalytic activity in synthesizing the oxidation of sulfides to the sulfoxides and Synthesis of pyrazolyl (Bis(pyrazolyl)methane) derivatives under green conditions. This designed nanocatalyst offers several advantages including the use of inexpensive materials and high yield, simple procedure, and commercially available. The synthesized mesoporous nanocatalyst was recovered and reused in five continuous cycles without considerable change in its catalytic activity.

4.
ACS Omega ; 9(5): 5255-5264, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38343929

ABSTRACT

Herein, we reported an efficient and novel metal-organic framework (MOF) that was designed and fabricated via hydrothermal reaction of chromium(III) nitrate nonahydrate salt with EDTA as an organic ligand. The prepared MOF was investigated by PXRD, BET, SEM, EDS, FT-IR, and X-ray mapping techniques. N2 adsorption-desorption isotherms indicated excellent BET surface area for Cr-EDTA-MOF, which is 234.55 m2/g. The prepared Cr-EDTA-MOF exhibits efficient and potential performance for the esterification of oleic and palmitic acids under gentle reaction conditions. Furthermore, this nanostructure material afforded several benefits, including excellent product yields, stability, easy methodology, easy workup, and greener situations. Furthermore, this heterogeneous nanocatalyst (Cr-EDTA-MOF) could be easily recovered from the reaction mixture by centrifugation and reused for four consecutive runs with a minimum loss of catalytic activity.

5.
Nanoscale Adv ; 5(18): 4925-4933, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37705777

ABSTRACT

Palladium complex-supported on boehmite (Pd(0)-SMTU-boehmite) nanoparticles were synthesized and characterized by using XRD, SEM, EDS, TGA, BET, ICP and FT-IR techniques. When applied as a new catalyst for C-C coupling reactions of Suzuki-Miyaura and Mizoroki-Heck in PEG-400 solvent, the Pd(0)-SMTU-boehmite nanoparticles showed excellent activity and recyclability. The study of palladium leaching by the ICP-OES technique and hot filtration led to the catalyst exhibiting excellent stability and recyclability.

6.
RSC Adv ; 13(25): 17449-17464, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37313518

ABSTRACT

In this study, a new palladium nanocatalyst was supported on l-threonine functionalized magnetic mesocellular silica foams (MMCF@Thr-Pd) and was characterized by FT-IR, XRD, BET, SEM, EDS, VSM, TGA, ICP-OES and elemental mapping techniques. The obtained MMCF@Thr-Pd performance can show excellent catalytic activity for Stille, Suzuki, and Heck coupling reactions, and the corresponding products were obtained with high yields. More importantly, the efficient and stable MMCF@Thr-Pd nanocatalyst was recovered by applying an external magnetic field and reused for at least five consecutive runs without a change in the catalytic activity.

7.
Sci Rep ; 13(1): 7645, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37169905

ABSTRACT

In this paper, a new type of magnetic mesoporous material (Fe3O4@SiO2@KIT-6@2-ATP@CuI) was designed and synthesized and its application in the synthesis of amides and anilines was investigated. The structure of Fe3O4@SiO2@KIT-6@2-ATP@CuI was characterized and identified using FTIR, SEM, XRD, TGA, BET, VSM, and ICP techniques. An external magnet can easily remove the synthesized catalyst from the reaction medium, and be reused in several consequence runs.

8.
Sci Rep ; 13(1): 7502, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37160980

ABSTRACT

In this study, Co-DAT-MOF powder was prepared via the solvothermal method using 4, 6-diamino-2-thiopyrimidine as the organic linker and Co(NO3)2·6H2O. The synthesized catalysts are characterized using XRD, FT-IR, TGA, SEM, BET, NH3-TPD, and ICP-OES techniques. SEM analysis clearly indicated the formation of nanosheet microspheres. NH3-TPD-MS was employed as a means of identifying the various strengths of acid sites and their relative abundance in an attempt to explain the effect of the catalyst surface acid sites. We identified a new acidic feature in Co-DAT-MOF catalyst, related to the presence of desorption peaks in the NH3-TPD profiles. The activity of Co-DAT-MOF catalyst for the synthesis of multicomponent reactions correlates with lewis acidity. In addition, Co-DAT-MOF exhibited excellent performance for the synthesis of pyrroloacridine-1(2H)-one and chromeno [2, 3- d] pyrimidin-8-amines, as well as good reusability and recyclability.

9.
RSC Adv ; 13(18): 12572-12588, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37101952

ABSTRACT

In this paper, KIT-6@SMTU@Ni was successfully synthesized via a new method of Ni(ii) complex stabilization on modified mesoporous KIT-6, as a novel and green heterogeneous catalyst. The obtained catalyst (KIT-6@SMTU@Ni) was characterized using Fourier transform infrared spectroscopy (FT-IR), Brunauer-Emmett-Teller (BET) calculation, X-ray diffraction (XRD), atomic absorption spectroscopy (AAS), energy-dispersive X-ray spectroscopy (EDS), X-ray mapping, thermogravimetric analysis (TGA) techniques and scanning electron microscopy (SEM). After complete characterization of the catalyst, it was successfully used for the synthesis of 5-substituted 1H-tetrazoles and pyranopyrazoles. Moreover, tetrazoles were synthesized from benzonitrile derivatives and sodium azide (NaN3). All tetrazole products were synthesized with high TON, TOF and excellent yields (88-98%) in a reasonable time (0.13-8 h), demonstrating the efficiency and practicality of the KIT-6@SMTU@Ni catalyst. Furthermore, pyranopyrazoles were prepared through the condensation reaction of benzaldehyde derivatives with malononitrile, hydrazine hydrate and ethyl acetoacetate with high TON, TOF and excellent yields (87-98%) at appropriate times (2-10.5 h). KIT-6@SMTU@Ni could be reused for five runs without any re-activation. Significantly, this plotted protocol has prominent benefits, such as applying green solvents, the use of commercially available and low-cost materials, excellent separation and reusability of the catalyst, short reaction time, high yield of products and a facile work-up.

10.
RSC Adv ; 13(4): 2265-2268, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36741168

ABSTRACT

In this research project, the preparation of a novel mesoporous silica compound (AGC-ZM-2022) using a fatty acid as a template has been reported for the first time. This mesoporous silica compound was designed using palmitic acid as a template, which is one of the most common saturated fatty acids found in animals, plants, and microorganisms. AGC-ZM-2022 mesoporous silica was prepared using tetraethylorthosilicate as a silica source and palmitic acid as a template (instead of traditional templates) through the sol-gel method. The physical properties and structure of AGC-ZM-2022 were studied by FT-IR, SEM, XRD, TEM, and BET techniques.

11.
Sci Rep ; 12(1): 20775, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36456752

ABSTRACT

In this paper, we report the synthesis of ZnFe2O4@SiO2@APTES@DHBS-Cu as a novel magnetic nanocatalyst, in a mild and green environment. The structure of the described magnetic compound was characterized by different physicochemical techniques including XRD, EDS, AAS, SEM, FT-IR, X-ray elemental mapping, TGA, and VSM analyses. The prepared magnetic nanoparticles exhibit excellent catalytic activity in synthesizing bis (pyrazolyl)methanes and oxidation of sulfide derivatives under green conditions. The heterogeneous nature of the catalyst was confirmed via the hot filtration experiment. Further, ZnFe2O4@SiO2@APTES@DHBS-Cu showed high efficiency and reusability that could be reused for at least five consecutive runs.

12.
RSC Adv ; 12(40): 26023-26041, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36199605

ABSTRACT

Herein, we delignated the synthesis of a novel inorganic sulfurous magnetic solid acid catalyst by the immobilization of an extremely high content of sulfuric acid functionalities on the amorphous silica-modified hercynite nanomagnetic core-shell via a simple method. Silica sulfuric acid (SSA) modified hercynite nanocomposite (hercynite@SSA) combines excellent recoverability and stability characteristics of hercynite (which can be regarded as a ferro spinel with Fd3m space group and cubic crystal structure) with the strong Brønsted acid properties of -SO3H groups. This nanomagnetic solid acid was found to be an efficient and facile strong solid acid catalyst for the synthesis of bis(pyrazolyl)methanes via two different one-pot multicomponent methodologies under green conditions. The hercynite@SSA catalyst shows excellent catalytic activity and reusability in the ethanolic medium among different solid acid materials. A plausible reaction mechanism is proposed for this synthesis.

13.
RSC Adv ; 12(36): 23595-23617, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-36090388

ABSTRACT

Developing "green" catalytic systems with desirable performance such as solubility, recyclability, and switchability is a great challenge. However, inspired by nature, the studies on synthesis and activity of artificial switchable metal catalysts and organocatalysts have become an intense, fervid, and challenging field of research. The peculiarity of these catalysts is that they can be generally triggered in the "on" or "off" states by several external stimuli such as light, heat, solvents, pH change, coordination events or ion influxes, redox processes, mechanical forces, or other changes in reaction conditions. A large number of review articles are available in these areas. However, most efforts are currently focused on the invention of new types of switchable catalysts with different forms of stimuli-response units incorporated within their architectures in order to achieve control over the catalytic activity and regio-, chemo- and stereocontrol of various chemical reactions. Thus, in this review, we begin with a brief introduction to switchable catalysts, followed by discussion of types of stimuli and the influence factors on their activities in the field of biomedical engineering, and catalysis as well as related catalytic mechanisms summarized and discussed. The emphasis is on the recent advances utilized in artificial switchable catalysis.

14.
Nanoscale Adv ; 4(9): 2208-2223, 2022 May 03.
Article in English | MEDLINE | ID: mdl-36133448

ABSTRACT

In this work, magnetic mesocellular foam (M-MCF) silica nanoparticles were prepared via inserting magnetic nanoparticles into the pores of mesocellular foams, the inner surface of which was functionalized with a methionine-nickel complex (M-MCF@Met-Ni). The structure of the as-prepared nanocatalysts was studied by FT-IR spectroscopy, BET, TGA, VSM, SEM, HR-TEM, EDS, WDX, XRD, and ICP-OES techniques. Thereafter, this nanocatalyst was used as a new, effective, and magnetically reusable catalyst for C-S and C-Se bond formation under mild conditions. All corresponding products were prepared with good yields and appropriate turnover number (TON) and turnover frequency (TOF), which reveals the high activity of this magnetic nanocatalyst in both reactions. In addition, the recovery and hot filtration tests indicated that this catalyst could be simply separated from the reaction mixture using an outside magnet and reused five consecutive times without any significant loss of its catalyst activity or metal leaching.

15.
RSC Adv ; 12(23): 14397-14410, 2022 May 12.
Article in English | MEDLINE | ID: mdl-35702251

ABSTRACT

An efficient and heterogeneous novel magnetic solid sulfuric acid, immobilized on silica functionalized SnFe2O4, was successfully synthesized, characterized, and employed as a novel recoverable nanocatalyst for the synthesis of biologically active polyhydroquinoline derivatives. The SnFe2O4@SiO2-SO3H was easily synthesized and confirmed using various spectroscopic techniques, including FT-IR, XRD, EDX, Map, TGA, SEM and TEM analyses. The catalytic behavior of the resulting catalyst system was investigated in the Hantzsch synthesis of polyhydroquinoline derivatives. The desired products were obtained with high conversions and excellent reusability.

16.
Sci Rep ; 12(1): 10338, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35725895

ABSTRACT

In this study, metal-organic framework based on molybdenum and piperidine-4-carboxylic acid, was synthesized through a simple solvothermal method and employed as an effective catalyst for biodiesel production from oleic acid and palmitic acid via esterification reaction. The prepared catalyst was characterized by XRD, FTIR, TGA, DSC, BET, SEM, TEM, ICP-OES, X-ray mapping and EDX analysis. The resulting Mo-MOF catalyst exhibit a rod-like morphology, specific surface area of 56 m2/g, and thermal stability up to 300 °C. The solid catalyst exhibited high activities for esterification of oleic acid and palmitic acid. Moreover, the catalyst could be simply recovered and efficiently reutilized for several times without significant loss in its activity, also obtained results revealed that metal-organic framework could be used for the appropriate and rapid biodiesel production.


Subject(s)
Biofuels , Metal-Organic Frameworks , Catalysis , Esterification , Molybdenum , Oleic Acid , Palmitic Acid
17.
RSC Adv ; 12(5): 2770-2787, 2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35425328

ABSTRACT

Herein, we report the synthesis of hercynite@sulfuric acid as a novel nanomagnetic solid acid catalyst, containing the sulfuric acid catalytic sites on the surface of hercynite MNPs as the catalytic support. The as-synthesized nanocomposite was meticulously characterized using a wide range of physicochemical techniques; including, FT-IR, XRD, EDX, X-ray-mapping, SEM and VSM analysis. The catalytic activity of this nanomagnetic material was considered for the synthesis of the diversely substituted polyhydroquinolines and 2,3-dihydroquinazolin-4(1H)-ones under solvent free conditions and also cyclocondensation reactions in ethanol, respectively affording good to excellent yields. Moreover, it is worth mentioning that the heterogeneity of the catalyst was measured through its excellent reusability and hot-filtration test.

18.
Sci Rep ; 12(1): 1479, 2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35087116

ABSTRACT

A three-dimensional walnut-like Zn-based MOF microsphere system was designed and synthesized via hydrothermal reaction of zinc salt with 4,6-diamino-2-pyrimidinethiol as a tridentate ligand. Besides, Zn ions were coordinated to the functional groups of the ligand to give a novel Zn-MOF microsphere material. Afterward, the resultant material was thoroughly characterized using various analysis and physico-chemical methods; including, FT-IR, XRD, TGA, EDX, X-ray mapping, SEM, TEM, and BET analysis. The Zn-MOF microspheres were utilized in the Hantzsch reaction for a selective synthesis of asymmetric polyhydroquinolines, using various aromatic aldehydes. Our strategy aims at providing a controlled synthesis of hierarchically nanoporous Zn-MOF microspheres with a well-defined morphology, structure, and excellent catalytic properties. Besides, it would result in having a promising heterogeneous catalyst for a selective synthesis with good yields, short reaction time, a low limit of steric hindrance and electronic effects. Moreover, the heterogeneity of the catalyst is further tested with hot filtration and also the reusability results point.

19.
Sci Rep ; 11(1): 23967, 2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34907281

ABSTRACT

In this paper, a new type of mesoporous material based on KIT-6 has been introduced. In this aim, magnetic Fe3O4 nanoparticles and mesoporous silica KIT-6 have been combined to obtain mesoporous MNPs. The prepared magnetic mesoporous catalyst has been applied in different carbon-carbon cross-coupling reactions including Mizoroki-Heck, Suzuki-Miyaura, and Stille reactions. This magnetic mesoporous compound is characterized by various techniques including FT-IR, BET, VSM, SEM, XRD, and TGA.

20.
Sci Rep ; 11(1): 24475, 2021 Dec 28.
Article in English | MEDLINE | ID: mdl-34963682

ABSTRACT

Coordinative polymers (CP) are a subclass of Metal-organic frameworks (MOFs) with porous microstructures which have been widely synthesized in recent years and applied in various fields especially in catalysis science. In this work Coordinative polymers (CP) of nickel and citric acid (CA) was prepared as a new catalyst (Ni-CP) and applied in organic multicomponent reactions. The obtained catalyst was characterized by SEM, WDX, EDS, AAS, FT-IR, XRD and BET analysis. N2 adsorption-desorption isotherms indicate good BET surface area for Ni-CP; therefore can be employed as an efficient catalyst in multicomponent reactions for the synthesis of polyhydroquinoline and 2,3-dihydroquinazolin-4(1H)-one derivatives. Finally, this catalyst was recovered and reused several consecutive times.

SELECTION OF CITATIONS
SEARCH DETAIL
...